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Variance as a Leading Indicator of Regime Shift in Ecosystem Services
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ABSTRACT. Many environmental conflicts involve pollutants such as greenhouse gas emissions that are
dispersed through space and cause losses of ecosystem services. As pollutant emissions rise in one place,
a spatial cascade of declining ecosystem services can spread across a larger landscape because of the
dispersion of the pollutant. This paper considers the problem of anticipating such spatial regime shifts by
monitoring time series of the pollutant or associated ecosystem services. Using such data, it is possible to
construct indicators that rise sharply in advance of regime shifts. Specifically, the maximum eigenvalue
of the variance-covariance matrix of the multivariate time series of pollutants and ecosystem services rises
prior to the regime shift. No specific knowledge of the mechanisms underlying the regime shift is needed
to construct the indicator. Such leading indicators of regime shifts could provide useful signals to
management agencies or to investors in ecosystem service markets.
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INTRODUCTION

Regime shifts are substantial reorganizations of
social-ecological systems (Scheffer et al. 2001,
Carpenter 2003, Walker and Meyers 2004, Brock
2006). Although examples are known from a wide
variety of systems, regime shifts are difficult to
study (Scheffer and Carpenter 2003) because they
usually involve spatially extensive regions,
stochastic processes, events that are infrequent
relative to a human lifetime, and processes at two
or more scales of space and time (Carpenter 2003).
Because of these challenges, we are only in the early
stages of understanding environmental regime
shifts. Nevertheless, regime shifts have important
implications for human livelihoods and well-being.
The Millennium Ecosystem Assessment (MA 2006)
noted that regime shifts, which it called “nonlinear
changes,” could substantially alter the flow of
ecosystem services, i.e., the benefits that people
obtain from ecosystems.

Recent research shows that ecosystem dynamics
become more variable prior to some regime shifts
(Berglund and Gentz 2002a,b, Kleinen et al. 2003,
Oborny et al. 2003, van Nes and Scheffer 2003,
Brock et al. 2006, Carpenter and Brock 2006). This

finding suggests that changes in variance can be a
leading indicator of an impending regime shift.
Brock et al. (2006) explain how this can occur for
one-dimensional systems. Carpenter and Brock
(2006) showed that the variance component related
to an impending regime shift could be separated
from environmental noise using methods that
required no knowledge of the mechanisms
underlying the regime shift. This finding suggests
that it might be possible to detect impending regime
shifts using routine monitoring data even in the
absence of a detailed ecological understanding of
the underlying nonlinearities. It remains to be seen
how variance indicators will perform in the real
world of managing ecosystem services.

This paper expands the study of variance indicators
of impending regime shifts in two main ways. First,
we extend the approach to multivariate, spatially
distributed systems. For ease of exposition, we
analyze a two-dimensional system, but our methods
generalize directly to higher-dimensional systems.
In this context, we sketch a framework for choosing
empirical variance indicators that are likely to be
sensitive to impending regime shifts. Second, our
model couples ecosystem dynamics to the flow of
ecosystem services. This suggests a forward-
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looking management system based on expected
future flows of ecosystem services. Although this
paper focuses on variance indicators rather than
policies for future flows of ecosystem services, our
findings can be nested in a more complete analysis
of ecosystem service markets and policies.

MODEL AND METHODS

Overview of the model

We consider a minimal model of two regions
connected by the transport of a pollutant (Fig. 1).
The pollutant is released as a side effect of activities
that yield economic benefits. However, the pollutant
has adverse effects on an ecosystem service such as
food production or the regulation of water quality.
Thus, the net present value to the society in a region
is a balance between polluting activity and the
ecosystem service. This situation is analogous to
many situations in modern society (MA 2006).
Some examples are (1) greenhouse gas pollution
from burning fossil fuels, which produces the
economic benefit of energy production but also has
adverse effects on climate and ecosystems; (2)
nitrogen emissions from livestock feeding
operations, which are linked to the economic benefit
of food production but also produce adverse effects
on air and water quality; and (3) pollution with
persistent organic toxins, which are associated with
economic benefits but also cause unwanted harm to
ecosystems and human health.

Within a region, the pollutant can be permanently
removed (the decay process in Fig. 1) or sequestered
(the sink process in Fig. 1). The decay process is
linear in the pollutant, and the sink process becomes
saturated at high pollutant levels. The linear process
is rate limited only by the supply of the pollutant.
An example is the destruction of organic pollutants
by UV irradiance. The saturating process is rate
limited by factors other than pollutant supply. An
example is sequestration in soils of phosphorus, an
important cause of water pollution, which can be
limited by the capacity of the soil to bind phosphate
ion. Another example is sequestration of CO2 in
ecosystems, which is limited by the capacity of the
plants to assimilate carbon.

The pollutant moves between regions from the
region of higher abundance to the region of lower
abundance (the mixing process in Fig. 1). Many
pollutants are transported across regional

boundaries. Atmospheric pollutants such as
greenhouse gases are the most familiar example.
Water pollutants are transferred among regions that
share shorelines on a single body of water. Other
pollutants are directly transported by people. For
example, manure is a waste product of animal
production that causes air and water pollution and
is also transported from regions of high manure
production to regions in which it is needed as a
fertilizer.

Model details

Within each region i, the dynamics of the pollutant
P and ecosystem service S are assumed to follow
 

(1)

  
where M is the emission rate, D is the transport rate
between region j and region i, c is the decay rate, s 
is the maximum sequestration rate, f(P) scales the
sequestration to the amount of pollutant, σ is the
standard deviation of shocks to the system, dW is a
Wiener noise process that is N(0,dt) and
independent for each i, m is the pollutant level at
which sequestration is half the maximum rate, q 
determines the slope of f(P) near P = m, r is the
renewal rate of the ecosystem service, k is the impact
of the pollutant on renewal of the ecosystem service,
and h is a parameter for the effects of extracting or
using the ecosystem service. The model for S is
chosen to be a simple function that yields S inversely
proportional to P. The dynamics studied in this paper
result from the behavior of P. Future work should
extend the approach to more realistic ecosystem
service models.

A rational social planner would consider the net
benefits of pollutant-emitting activities, which
generate M, and the ecosystem service, which
generates hS and is reduced by increasing P, as well
as any other economic consequences of P. The
expected net benefits, integrated over infinite time
with an appropriate discounting factor, would then
be considered (Ludwig et al. 2005). Policies for M 
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Fig. 1. Box-arrow diagram of the model showing flows of the pollutant and economic effects in the two
regions.

and h would be chosen to maximize these expected
net benefits. We will leave the economic analysis
of this model for later work and focus on the
ecological dynamics in this paper. Here we will
assume that economic considerations lead to some
appropriate choice of M and h for each region. These
choices may change as events unfold and
circumstances change over time. We wish to study
the dynamics as M1 slowly rises past a critical point.

The effects of three levels of M within one region
are presented in Fig. 2. The blue curve shows sf(P) 

vs. P. The red straight lines show the graph of the
function of P defined by M + D(Pj - P) - cP for three
values of M. Intersections denote equilibria. When
M is low, there is one stable equilibrium at a
relatively low value of P. When M is high, there is
one stable equilibrium at a relatively high level of
P. At the intermediate M, there are three equilibria.
These are unstable, whereas the low-P and high-P 
equilibria are stable. This paper will focus on the
case in which M rises slowly and gradually from a
value with two stable P equilibria (like the middle
red line) past the critical point at which the low-P 
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equilibrium disappears, leaving only the high-P 
equilibrium (like the upper red line).

Model analysis

To build intuition about the dynamics and
variability of P, we plot potential surfaces and
stationary distributions for the model using
equations presented in Appendix 1. A ball-and-cup
diagram for the system is given by a plot of the
negative potential vs. P1 and P2. Here we plot −log
(potential + constant) for convenience, where the
constant is chosen to yield positive arguments to the
log function. Note that the maxima and minima of
−log(potential + constant) are identical to those of
−potential. Over a long period of time, the system
approaches a stationary probability distribution
(Appendix 1). The spread of the stationary
distribution is related to the variability of P near
steady state. The stationary probability distribution
is the limit distribution that can be shown to be
unique for the diffusion systems considered here. It
can be found by solving for the steady-state density
of the Fokker-Planck equation (Horsthemke and
Lefever 1984, Berglund and Gentz 2002b). It is
possible to study regime shifts of stochastic systems
via bifurcation analysis of the steady-state solutions
of the Fokker-Planck equations. We do not follow
that path here, because the system has a potential.
However, many ecologically interesting systems of
two dimensions and higher do not have potentials
(Brock et al. 2006). The framework presented in this
paper can be generalized to these cases by studying
steady-state solutions of the Fokker-Planck
equations.

To study the dynamics of variance, we simulated
time series of P and S using the Euler method
adapted for the Ito solution of stochastic differential
equations (Horsthemke and Lefever 1984). We do
this by iteratively computing using Eq. 2 below.
Each time step dt is of length 1/n. Over each small
increment we compute
 

(2)

  

where Zi,t is an independently drawn random
number (normal, mean 0, variance 1) for each small
time increment and region. Results presented here
use n = 36. For each time step, the n values of P1,
P2, S1, and S2 are used to compute a covariance
matrix. The variance indicator for the time step is
the largest eigenvalue of that covariance matrix.
This eigenvalue is strongly affected by variance in
the spatial unit that is approaching a critical point,
but only lightly affected by spatial units that are
merely noisy. Technical details on choosing
variance indicators for impending regime shifts are
addressed in Appendix 1.

RESULTS

Variance near a regime shift: simple case

Here we introduce a simplified heuristic to build
intuition about changes in variance near a regime
shift (Brock et al. 2006, Carpenter and Brock 2006).
The key is to recognize three time scales: (1) very
slow change in an exogenous driver or slowly
changing system component, (2) medium-speed
change in the state variable subject to regime shift,
and (3) fast changes in random shocks to the rate
equation for the state variable. Assume that these
three time scales are quite different, in the sense that
a faster variable can approach equilibrium over a
time period of only slight change in a slower
variable. For this paper, the slowest speed is the very
gradual change in pollutant input M, the focal state
variable (medium speed) is P, and the fast shock
process is denoted by dW. We introduce the variable
a to represent the discrete shocks drawn from a
random-number generator to simulate the solution
of the P dynamics over very short intervals of time.
For a simplified one-dimensional case, define dP/
dt = V(M,P,a), let var(da) denote the variance of the
random disturbances (a constant in this case), and
let var(dP) represent the variability we observe in
P over a time interval during which many small
random shocks occur. Suppose that M is moving so
slowly that P is near an equilibrium, that is, 0 = V
(M,P + dP,a + da). For each shock a + da, we assume
the fast dynamics of a are so fast that the system has
relaxed to a new steady-state P + dP on the time
scale relevant for P. Then it can be shown, by
expanding V(M,P + dP,a + da) in a Taylor series
about (P,a) that
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Fig. 2. Rate of input + diffusion - decay (red lines) for three values of pollutant discharge in region 1, M1 
(0.9, 1.5, and 2.1), and the rate of loss from the saturating sink (blue line). For a given minimum
pollution rate in region 1, M1, equilibria occur at the points at which the red line crosses the blue line.
The pollutant level in the other region was set at 1.6. Other parameters: M2 (pollution discharge rate in
region 2) = 0.75; D (transport rate between regions) = 0.1; c (decay rate) = 0.05; s (maximum
sequestration rate) = 0.5; m (pollutant level at which sequestration is half the maximum rate) = 5; q, 
which determines the slope of f(P) near P = m, = 6. P stands for amount of pollutant, and f(P) scales the
sequestration to the amount of pollutant. 

(3)

  
(Brock et al. 2006, Carpenter and Brock 2006).

To understand the implications of Eq. 3 for variance

near a regime shift, consider Fig. 3, which plots V 
vs. P for a case with lower M (blue line) and higher
M (red line). Suppose the pollutant level is near the
lower stable equilibrium. The red line (higher M) is
closer to regime shift. Clearly, dV/dP is lower for
the red line, and therefore var(dP) must be larger
for the case closer to regime shift. Intuitively, the
variance of da gets magnified more and more as dV/
dP, evaluated at steady-state P, gets closer and closer
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to zero. Earlier papers discuss this point in more
detail (Brock et al. 2006, Carpenter and Brock
2006).

Although this heuristic shows how the small shocks
are magnified near a regime shift, it is a one-
dimensional case that makes simplifying
assumptions about time scales, proximity to
equilibrium, and near-linearity. We now turn to the
more complex spatial model by first considering the
potential surfaces and stationary distributions and
then presenting a simulation example.

Potential surfaces and stationary distributions

To understand changes as pollutant emission slowly
increases in one region, we plotted negative
potential surfaces for the pollutants at four levels of
emission in region 1 (Fig. 4). Valleys in the surface
represent attractors, as in a ball-and-cup stability
diagram. At the lowest emission rate (M1 = 1.25,
upper left), there is a deep attractor at low pollutant
levels and a shallow attractor at moderately high
levels of the pollutant in both regions. When the
emission rate is increased to 1.5, a third attractor
appears, with moderately high pollutant levels in
region 1 and low pollutant levels in region 2. The
attractor with low pollutant levels becomes more
shallow, and the attractor with relatively high levels
of both pollutants deepens. When the emission rate
increases to 1.75, the attractor with relatively high
pollutant levels becomes even deeper, and the
attractor with low pollutant levels becomes quite
shallow. At an emission rate of 2.0, the high-
pollutant valley appears to be the only attractor.

Stationary probability distributions are roughly the
same as the negative potential surfaces turned
upside down (Fig. 5). At the lowest emission rate
(M1 = 1.25, upper left), the probability mass is
concentrated at low pollutant levels, and thus the
overall variance of Pi is relatively low. When the
emission rate is increased to 1.5, there are three
distinct peaks, with the greatest mass of probability
at relatively high pollutant levels, suggesting fairly
high variance of Pi. The dominance of probability
peak at high P becomes successively greater when
emission is 1.75 and then 2.0, suggesting lower
variance of Pi.

Dynamics of variance

Although the potential surfaces and probability
distributions are useful for building intuition about
the attractors for the system and the dispersion of P 
over long periods of time, a person who is observing
the system and making decisions about it may not
have this information. It is more likely that the
decision maker will observe time series of pollutant
levels or the supply or price of the ecosystem service
and draw inferences from these. Observable
features of these time series can provide signals of
impending regime shift in advance of the actual
regime shift. To illustrate this point, we simulated
dynamics over long periods of time while slowly
raising M1.

The time series from such a simulation show two
regime shifts (Fig. 6). In the first regime shift, region
1 moves to a moderately high pollutant level,
followed by the movement of region 2 to a
moderately high pollutant level. In the second
regime shift, region 2 moves to a high pollutant
level, followed by the movement of region 1 to a
high pollutant level. Corresponding shifts in
ecosystem services are opposite in direction to the
shifts in pollutant level.

The variance index spikes before each regime shift
(Fig. 7). If we focus on a narrower window of time
around the regime shift, it appears that the increase
in variance occurs roughly 5–20 time steps prior to
the regime shift (Fig. 8). Note that variance is
smoothed such that the index at time t = average of
index at times t, t - 1, t - 2. This backward-looking
smoothing might degrade the lead time of the
indicator. Despite this, there is still a clear rise in
the indicator prior to each regime shift.

DISCUSSION

Rising variance and regime shifts

Our findings corroborate earlier work showing that
ecosystem behavior becomes more variable prior to
a regime shift (Berglund and Gentz 2002a,b, 
Kleinen et al. 2003, Oborny et al. 2003, van Nes and
Scheffer 2003, Brock et al. 2006, Carpenter and
Brock 2006). This paper shows that rising variance
serves as a leading indicator in a situation in which
ecosystems are coupled across space. The detection
of rising variance requires no special knowledge of
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Fig. 3. Net rate of change for a single region vs. pollutant level for two rates of input to region 1. Blue:
the pollution rate for region 1 (M1) = 1.6; red: M1 = 1.9). Circles denote stable points. The pollutant level
in the other region was fixed at 1.6. Other parameters: M2 (the pollution rate in region 2) = 0.75; D (the
transport rate between regions) = 0.1; c (the decay rate) = 0.05; s (the maximum sequestration rate) =
0.5; m (the pollutant level at which sequestration is half the maximum rate) = 5; q (which determines the
slope of f(P) near P) = 6. P stands for amount of pollutant, and f(P) scales the sequestration to the
amount of pollutant.

ecosystem dynamics. A simple indicator based on
the dominant eigenvalue of the covariance matrix
for observed time series can detect the rising
variance. This is so because the dominant
eigenvalue is strongly influenced by the spatial unit
that is closest to a regime shift. Therefore, the
dominant eigenvalue can provide early clues of
regime shift even in cases in which the investigator

is unsure about which ecosystem variables are most
important. Also, the dominant eigenvalue may be
relatively insensitive to junk variables that are
highly noisy but carry no signal related to an
impending regime shift. In Appendix 1, we address
technical issues related to constructing variance
indicators for regime shifts.
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Fig. 4. Potential surface (negative log potential) vs. pollutant in region 1 and region 2 for four different
input rates to region 1. Parameters: M1 (pollution discharge rate in region 1) = 1.25, 1.5, 1.75, and 2; M2 
(pollution discharge rate in region 2) = 0.75; c1 (decay rate in region 1) = 0.05; c2 (decay rate in region
2) = 0.1; D (transport rate between regions) = 0.1; s (maximum sequestration rate) = 0.5; m (the
pollutant level at which sequestration is half the maximum rate) = 5; q (which determines the slope of f
(P) near P) = 6. P stands for amount of pollutant, and f(P) scales the sequestration to the amount of
pollutant.

In practice, the indicator will be sensitive to the time
interval over which the covariance matrix is
calculated. The time interval should be short enough
that the slow driver, M in this case, does not change
much, and long enough for the shocks to approach
the stable distribution. Carpenter and Brock (2006)
comment on some issues related to filtering data for

variance signals. In general, however, much work
remains to be done in the area of designing filters
for variance signals of regime shifts in data.

It is important to note that we studied a “hard”
regime shift in which there was a discontinuous
change because of the disappearance of an attractor.

http://www.ecologyandsociety.org/vol11/iss2/art9/


Ecology and Society 11(2): 9
http://www.ecologyandsociety.org/vol11/iss2/art9/

Fig. 5. Stationary distribution vs. pollutant in region 1 and region 2 for four different input rates to
region 1. Parameters: M1 (pollution discharge rate in region 1) = 1.25, 1.5, 1.75, and 2; M2 (pollution
discharge rate in region 2) = 0.75; c1 (decay rate in region 1) = 0.05; c2 (decay rate in region 2) = 0.1; D 
(transport rate between regions) = 0.1; s (maximum sequestration rate) = 0.5; m (the pollutant level at
which sequestration is half the maximum rate) = 5; q (which determines the slope of f(P) near P) = 6. P 
stands for amount of pollutant, and f(P) scales the sequestration to the amount of pollutant.

For other kinds of regime shifts, variance signals
may be weak or absent. For example, the pitchfork
bifurcation, in which one regime splits continuously
into two regimes, may not be preceded by an
increase in variance, depending on the standard
deviation of the shocks and the relaxation time of
the fast variables in the system (Berglund and Gentz
2002b). A simple ecological example is the paradox
of enrichment (Rosenzweig and MacArthur 1963),

in which gradual nutrient enrichment destabilizes a
resource-consumer system. In the original case,
there is a rise in variance before the regime shift
(Nakajima and DeAngelis 1989) comparable to the
phenomenon described in this paper. However, if
the paradox of enrichment is placed in an ecosystem
model with nutrient recycling by the consumer,
variance decreases over a period of time as the
critical point is approached, then increases sharply
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Fig. 6. Time series of ecosystem services (upper panel) and pollutant (lower panel) in each region vs.
time as M1 (pollution discharge rate in region 1) increases linearly from 2.0 to 2.1. Other parameters: r 
(renewal rate of the ecosystem service) = 1; h (effects of extracting or using the ecosystem services) =
0.5; k (impact of the pollutant on the renewal rate of the ecosystem service) = 0.5; M2 (pollution
discharge rate in region 2) = 0.75; c1 (decay rate in region 1) = 0.05; c2 (decay rate in region 2) = 0.1; D 
(transport rate between regions) = 0.1; s (maximum sequestration rate) = 0.5; m (the pollutant level at
which sequestration is half the maximum rate) =5; q (which determines the slope of f(P) near P) = 6; σ =
0.05. P stands for amount of pollutant, and f(P) scales the sequestration to the amount of pollutant.

just before the critical point is reached (Nakijima
and DeAngelis 1989). Thus, real systems could
feasibly have complexities that cause variance to
decrease for a while before arriving at a regime shift.
Ecosystems seem to exhibit a considerable diversity
of regime shifts, a range of speed differences
between fast and slow variables, and diverse

distributions of shocks (Scheffer et al. 2001,
Carpenter 2003, Walker and Meyers 2005). More
research is needed to ascertain which kinds of
ecosystem regime shifts are likely to be signaled in
advance by increases in variance.
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Fig. 7. Pollutant in region 1 and variance index (upper panel) and pollutant in region 2 and variance
index (lower panel) for the simulation shown in Fig. 6.

Ecosystem services

Our analysis considered changes in an ecosystem
service as well as a biogeochemical variable such
as a pollutant. Clearly, a more complete economic
analysis of this system could be carried out by
specifying the form of the expected net present value
over future time, although this is not the purpose of
the present paper. However, we note that the
variance signals discussed here could readily be
transferred to economic signals. For example, a
jump in pollutant P at some random time in the
future will cause ecosystem service S to drop.
Furthermore, individuals who have a better

knowledge of the system may have more accurate
expectations of future ecosystem services than those
observers who are not as well informed about the
details and structure of the system. Hence, if there
were a stock market for trading of claims to the
future flow of ecosystem services, then the equity
value of such an entity, assuming that equity shares
are the only outstanding claims against it, would be
given by the expression for discounted net present
value over future time (Duffie 1988). Grossman
(1989) explains how markets aggregate individual
specialized information about assets into market
values for those assets.
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Fig. 8. Results from Fig. 6 with the time frame narrowed to focus on the regime shifts. In this case, the
variance index is smoothed by averaging the previous three observations, i.e., variance index at time t =
mean of the variance index at times t, t-1, and t-2.

We believe that a market price equation may lead
to the development of more sensitive indicators of
impending regime change than the variance
indicators we develop in this paper. Furthermore, in
the case of corporations that have claims on
ecosystem services for which there are options
markets available on the stocks of such
corporations, an even more powerful indicator of
impending regime change is available (Bates 1991).
Bates compares the prices of “put” options, i.e.,
options to sell a certain quantity of stock at a
specified target price up to a specified date, vs. “call”

options, i.e., options to buy a certain quantity of
stock at a specified target price up to a specified
date. His result applies to “out-of-the-money”
options, that is, a call option with a target price
higher than the market price of the stock or a put
option with a target price lower than the market price
of the stock. If out-of-the-money put options are
selling for a lot more than out-of-the-money call
options for a given stock, then this is strong evidence
for an impending sharp drop in the value of the stock.
In our context, this would be strong evidence for an
impending regime change, i.e., a sharp increase in
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P that harms S. We believe that this approach can
be generalized to settings in which the pollutant
discharge M or harvest function h(S) is chosen to
optimize the expectation of future discounted net
present value at each point in time (Carpenter et al.
1999, Carpenter and Brock 2004).

However, markets are available for only a small
fraction of the world's ecosystem services, and few
of these have options markets (MA 2006). In most
cases, markets are absent or severely distorted by
government intervention. Thus, in the majority of
cases, indicators based on direct monitoring of
ecological variables or ecosystem services may be
the only means of addressing regime shifts. We
believe that research will reveal useful leading
indicators of regime shifts in ecosystem services.
Such research should use a wider range of models
than the aggregated ones presented in this paper, as
well as diverse time-series data sets. For example,
individual-based models that simulate diverse
behaviors of individual human stakeholders and
ecosystem components, and their responses to
pollutants and services, may yield new insights
about social-ecological dynamics prior to regime
change (DeAngelis and Mooij 2003).

CONCLUSIONS

Although variance provides a signal of impending
regime shift, it remains to be seen whether the
message can evoke adaptive social responses. It is
plausible that variance signals could trigger
appropriate responses by some individual investors
in ecosystem service markets. However, by the time
the variance signal is clear, the regime shift may be
“an accident waiting to happen.” Momentum in
slowly changing ecosystem components may make
it difficult to reverse course (Carpenter 2003). Many
factors in societies impede adaptive responses to
impending environmental breakdowns (Scheffer et
al. 2003). Even if ongoing research verifies the
reliability of variance indicators of regime shifts,
substantial institutional reforms may be needed to
use such indicators in the forward-looking
management of ecosystem services.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol11/iss2/art9/responses/
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Appendix 1. Technical background for variance indicators.

Please click here to download file ‘appendix1.pdf’.
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