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ABSTRACT. Although satellite imagery is becoming a basic component of the work of ecologists and 
conservationists, its potential and reliability are still relatively unknown for a large number of ecosystems. Using 
Landsat 7/ETM+ (Enhanced Thematic Mapper Plus) data, we tested the accuracy of two types of supervised 
classifications for mapping 13 peatland habitats in southern Quebec, Canada. Before classifying peatland habitats, 
we applied a mask procedure that revealed 629 peatlands covering a total of 18,103 ha; 26% of them were larger 
than 20 ha. We applied both a simple maximum likelihood (ML) function and a weighted maximum likelihood 
(WML) function that took into account the proportion of each habitat class within each peatland when classifying 
the habitats on the image. By validating 626 Global Positioning System locations within 92 peatlands, we showed 
that both classification procedures provided an accurate representation of the 13 peatland habitat classes. For all 
habitat classes except lawn with pools, the predominant classified habitat within 45 m of the center of the 
validation location was of the same type as the one observed in the field. There were differences in the 
performance of the two classification procedures: ML was a better tool for mapping rare habitats, whereas WML 
favored the most common habitats. Based on ordinations, peatland habitat classes were as effective as 
environmental variables such as humidity indicators and water chemistry components at explaining the 
distribution of plant species and performed 1.6 times better when it came to accounting for vegetation structure 
patterns. Peatland habitats with pools had the most distinct plant assemblages, and the habitats dominated by 
herbs were moderately distinct from those characterized by ericaceous shrubs. Habitats dominated by herbs were 
the most variable in terms of plant species assemblages. Because peatlands are economically valuable wetlands, 
the maps resulting from the new classification procedure presented here will provide useful information for land 
managers and conservationists. 

INTRODUCTION Remote sensing offers promising tools for detecting 
and mapping regional landscape patterns and 
processes (Roughgarden et al. 1991, Kasischke et al. 
1997, Joint and Groom 2000). For these purposes, 
satellite imagery presents several advantages over 
other remote sensing techniques such as the 
interpretation of aerial photographs. Satellite imagery 
covers larger areas, has a greater spectral resolution, is 
already in digital format, and is processed more 
homogeneously across a whole region (e.g., in Fig. 1) 
and at a lower cost (Fuller et al. 1989, Konrad and 
Rempel 1990, Holopainen and Wang 1998, Mumby et 
al. 1999) than alternative methods. So far, satellite 
image classification has been developed for a wide 
variety of habitats, including agricultural lands (Oetter 
et al. 2001), forest stands (Rey-Benayas and Pope 
1995), grasslands (Lauver and Whistler 1993), and 
wetlands (see references in following paragraph). 
Nevertheless, satellite imagery is not often used to 

Concerns about the loss of biological diversity have 
encouraged ecologists to improve their ability to trace 
species distributions and occurrences over large spatial 
scales and short periods of time (Schoch and Dethier 
1996, Boone and Krohn 1999, Pearce and Ferrier 
2001). Sampling methods based on the coarse filter 
approach (Noss 1987, 1996) have gained popularity as 
efficient tools for protecting a large part of species 
diversity (Franklin 1993, Wilcove 1993, Schwartz 
1999, Hughes et al. 2000). Although conservation 
strategies based on habitats or plant communities have 
their limitations, e.g., plant communities may not 
always be a good surrogate for the distribution patterns 
of rare species (Panzer and Schwartz 1998), they 
remain an essential component of land use planning 
and reserve selection procedures (Pressey 1994, 
Margules and Pressey 2000).  
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investigate peatlands, despite the fact that they are 
dominant, regionally threatened landscape elements in 

many parts of the northern hemisphere (Gorham 1990, 
Lappalainen 1996). 

 

Fig. 1. Land cover classifications of five peatlands representing the 13 habitats defined a priori. Both the maximum 
likelihood classification (ML) and the maximum likelihood function (WML), which takes into account the proportion of each 
habitat class within a particular peatland, are shown for each peatland, along with their corresponding aerial photographs. 
Readers with some photo-interpreting skills will notice a relatively good correspondence between the patterns on the aerial 
photographs and the ones that emerged from the two classifications. Habitat codes are defined in Table 1; see Fig. 2 for the 
location of the five peatlands in the study region.  
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Previous work that attempted to classify different 
wetland habitats was restricted mainly to broadly 
defined habitat types and carried out for specific 
purposes such as quantifying the extent of potential 
foraging sites for wildfowl (Hogson et al. 1987, Herr 
and Queen 1993, Grenier et al. 1994, Tatu et al. 1998). 
In peatlands, satellite imagery has been used to detect 
water flow (Glaser et al. 1981, Glaser 1983) and 
investigated with regard to its ability to map 
vegetation types (Glaser 1989). However, only a few 
studies have successfully mapped several types of 
peatland habitat (Palylyk et al. 1987, Quarmby et al. 
1997, Boresjö Bronge and Nöslund-Landenmark 1999, 
Aaviksoo et al. 2000). Although only one of these four 
studies presented detailed quantitative information 
about the accuracy of their classifications, they 
indicate the potential of remote sensing for mapping 
peatland habitats defined using a high resolution.  

With the aim of conserving species diversity, there is a 
clear need to improve our ability to distinguish one 
habitat type from other similar types. Moreover, if we 
are to adopt the coarse filter approach, we also need to 
be able to establish reliable links between certain 
habitat types and the occurrence of particular species 
(Roughgarden et al. 1991, Stoms and Estes 1993, 
Lewis 1998). Methods have been developed for 
mapping habitats based on spectral reflectance patterns 
and establishing their correspondence with the 
occupancy patterns of plant or animal species (Scott et 
al. 1993, Lauver 1997, Nøhr and Jørgensen 1997, 
Fuller et al. 1998, Debinski et al. 1999, Nagendra and 
Gadgil 1999). Nevertheless, the few remote sensing 
studies that did address the distribution of plant 
species in wetlands dealt mainly with pure vegetation 
stands and/or were conducted 1�2 m above the canopy 
with portable field spectrometers (Budd and Milton 
1982, Peñuelas et al. 1993, Zhang et al. 1997, Spanglet 
et al. 1998). For conservation purposes, these advances 
should be applied to broader areas so that data 
collected from satellite-borne sensors can be used to 
predict the occurrence of wetland species and 
vegetation structure patterns across the landscape.  

In this paper, we assess the use of Landsat 7/ETM+ 
(Enhanced Thematic Mapper Plus) satellite imagery 
for mapping peatland habitats at spatial scales relevant 
to regional (1000 km2) diversity management. More 
specifically, we compare the accuracy of two 
supervised classification procedures for mapping 13 
habitat classes that we defined a priori based mainly 
on vegetation structure. We also assess how much 
variability in the vegetation structure and plant species 

patterns can be explained by our classification system 
vs. 15 environmental variables, and how distinct and 
variable the species compositions are in the 13 habitats 
defined a priori. 

 

Fig. 2. Study area with peatland polygons (in yellow) 
resulting from the mask procedure. Numbers correspond to 
peatlands presented in Fig. 1 (peatland numbers are ordered 
from top to bottom).  

 
 

STUDY AREA 

The study area consists of about 5000 km2 of lowlands 
located on the south shore of the St. Lawrence River in 
the province of Quebec, Canada (Fig. 2). It is 
dominated by marine sands whose maximal altitude is 
< 150 m above sea level. In this region, peatlands 
occur on poorly drained terrain that is normally found 
between thin, littoral strings of sand and gravel. The 
region is characterized by forested (45%) and 
agricultural (40%) lands (Robitaille and Saucier 1998). 
Peatlands cover about 4% of this region; they are 
ombrotrophic or weakly minerotrophic and therefore 
dominated by Sphagnum mosses.  
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METHODS 

Selection of satellite image 

We purchased a Landsat 7/ETM+ (Enhanced Thematic 
Mapper Plus) scene taken on 14 July 1999, a period 
that coincided with the full development of most of the 
vegetation types in our study area (see 
http://landsat7.usgs.gov/). The image contains 
radiometric information recorded by a scanner in six 
spectrally defined channels of 30 x 30 m pixels as well 
as two additional channels, one for thermal infrared 
radiation measuring 60 x 60 m pixels and one 
panchromatic channel of 15 x 15 m pixels (Jones and 
LeAnn 2000). The panchromatic and thermal bands 
were not used for the classification work because of 
their low spectral and spatial resolutions, respectively.  

We proceeded with a single-date imagery 
classification because of logistical and financial 
constraints. However, we do not think that this 
impaired our ability to discriminate among habitat 
classes, because there are no pronounced differences 
in plant phenology in peatland habitats: most shrub 
species are evergreen, and herb development is quite 
synchronous among species. Moreover, the image was 
taken at mid-summer, i.e. when the water table was 
likely to be below its maximum (Price 1997, Verry 
1997, Van Seters and Price 2001), which made it 
easier to discriminate among habitats.  

Habitat classes and training sites 

We mapped peatland habitats using a supervised 
classification approach (Richards and Jia 1999) that 
requires habitat classes to be defined a priori. The 
spectral signature (radiance) of a given habitat class 
was then determined by sampling pixels known to 
belong to that class, with the help of "training sites." 
Finally, a classification algorithm assigned each pixel 
of the image to one of the habitat classes based on the 
statistical properties of the radiance data of each 
habitat class. Following Palylyk et al. (1987) and 
relying on the ability of three experts to recognize 
habitat patterns on aerial photographs, we defined 17 
habitat classes based on the structural properties of the 
vegetation as well as on species discrimination among 
some forested habitat classes. Four of the habitat 
classes originally defined were eliminated in the early 
stages of the study because they were rare or hard to 
access, leaving 13 habitat classes in the final 
classification (Table 1, Appendix 1). We restricted our 
study to peatlands that were less than 50% covered by 

trees > 4 m high. Cedar (Thuja occidentalis L.) and 
maple (Acer spp.) forests on peat were not considered, 
nor were the lagg zones that occur at the edges of 
peatlands and therefore represent an ecotone. 

 

Table 1. The 13 habitat classes defined a priori for the 
supervised classifications. See Appendix 1 for a more 
detailed description of each habitat class. The rank of a 
specific vegetation strata within a habitat class determines 
its dominance. For example, larches are dominant in habitat 
class 8 but more scattered in habitat class 9. The density of 
the tree cover represents the main difference between the 
two habitat types.  

Class 
number Class code         Description          

1 SprFor Spruce forest with open 
canopy          

            
2 Eric Ericaceous shrubs          

            

3 Herb 
Herbs (including both forbs 
and sedges other than tall 
Carex) 

         

            
4 TSedge Tall sedges          

            
5 Spr Spruce thickets          

            

6 EriSpr Ericaceous shrubs with spruce 
thickets           

            
7 HerSpr Herbs with spruce thickets          

            
8 LarEri Larch with ericaceous shrubs          

            
9 EriLar Ericaceous shrubs with larch          

            
10 LarHer Larch with herbs          

            
11 HerLar Herbs with larch          

            
12 SprPool Spruce thickets with pools          

            
13 LawnPool Lawn with pools          
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Training sites were located in 15 different peatlands 
that ranged in size from 60 to 756 ha and that were 
chosen to cover the entire range of the 13 habitat 
classes that we had defined a priori. These sites were 
selected with the help of aerial photographs, followed 
by ground-truthing conducted in the fall of 1999. The 
minimum area for a training site was 0.5 ha, i.e., about 
six pixels. The geographical location of each training 
site was determined using a Differential Global 
Positioning System (DGPS) receiver. Following the 
ground-truthing of these training sites, 1021 pixels 
were sampled on the nongeoreferenced satellite image 
for an average (± SD) of 79 ± 42 pixels per habitat 
class. This number of training sites was considered 
sufficient because only one class (LawnPool) had 
fewer than 50 (ca. 28) sampled pixels (Richards and 
Jia 1999). For this step, DGPS locations of training 
sites were positioned on the georeferenced satellite 
image using ArcView GIS software (Environmental 
Systems Research Institute 1996). Information from 
this georeferenced image was transposed visually onto 
the nongeoreferenced satellite image. We are confident 
that this method did not bring any bias into our 
sampling of training sites, all of which were located 
within large homogeneous zones that were easily 
recognizable on both images. Pixels corresponding to 
the training sites were not sampled on the 
georeferenced image to avoid spatial distortion of 
individual pixels and keep the proportions of each 
class on the image unchanged (cf. Richards and Jia 
1999).  

Distinguishing peatlands from the matrix 

Before classifying peatland habitats, we built a mask 
to isolate the pixels corresponding to peatland habitats 
from the rest of the image. Each pixel of the image 
was thus assigned to one of two superclasses: peatland 
or nonpeatland. The spectral signature of the peatland 
superclass was based on the training sites sampled in 
11 of our 13 peatland habitat classes (Table 1). 
Habitats 1 (spruce forest with open canopy) and 12 
(spruce thickets with pools) were excluded from the 
peatland superclass because they tended to 
overestimate the surface area of peatlands. These two 
habitat classes were nevertheless considered when 
classifying peatland habitats thereafter and are thus 
part of the resulting habitat maps.  

The nonpeatland superclass was composed of two 
classes: a hydrographic class corresponding to rivers 
and lakes, and a generic class corresponding mainly to 
forests, urban areas, and agricultural lands. The 

spectral signature of the hydrographic class was 
determined by sampling pixels from water bodies 
located in all parts of the image, whereas the spectral 
signature of the generic class was determined by 
sampling 1000 pixels randomly over the entire image. 
Although this procedure could capture peatland pixels, 
their contribution to the statistical properties of the 
spectral signature of the generic class was likely to be 
small compared to the total extent of other land cover 
types. 

Each pixel of the image was attributed to either the 
peatland or the nonpeatland superclass according to 
normal maximum likelihood functions, which were 
calculated to discriminate between the two 
superclasses. When the ratio between the functions for 
the peatland and nonpeatland superclasses was greater 
than a certain threshold, the pixel was assigned to the 
peatland superclass. This threshold was set at 25 after 
conducting 50 experiments and evaluating the 
resulting peatland boundaries using aerial 
photographs. For a pixel ultimately to be classified as 
peatland habitat, an additional condition had to be met: 
pixels identified as peatland habitat using the spectral 
threshold approach also had to be part of a cluster of at 
least 55 contiguous pixels of peatland habitat, which 
corresponds to a peatland at least 4.95 ha in size. This 
was done to avoid including many narrow river banks 
and other small, nonpeatland habitats in the mask. The 
last step of mask construction consisted of converting 
groups containing six or fewer contiguous pixels 
classified as nonpeatland habitat to peatland habitat, 
providing that they occurred within peatland polygons. 
The threshold was set at six pixels to exclude mineral 
outcrops or densely forested peatland islands from our 
peatland classification.  

Distinguishing habitats within peatlands 

Once the mask was built, two approaches were tested 
for classifying within-peatland habitats. The first was a 
typical multivariate Gaussian-based maximum 
likelihood (ML) function that assigned to each 
peatland pixel the most likely habitat class based on 
the training sites (Richards and Jia 1999). The second, 
weighted maximum likelihood (WML) approach 
accounted for positive spatial autocorrelations among 
neighboring pixels and thereby incorporated the 
contextual information found in peatland polygons to 
estimate the most likely class for each pixel. 
Technically, for every pixel of a given peatland 
polygon, a set of probabilities that the pixel belonged 
to each of the habitat classes was first calculated by 

 
 

http://www.consecol.org/vol6/iss2/art16


Conservation Ecology 6(2): 16. 
http://www.consecol.org/vol6/iss2/art16 

 

ML using multinormal functions in which covariance 
matrices were estimated from the training sites. This 
information was then used to estimate the relative 
proportions of each habitat class in the peatland 
polygons by means of a maximization-expectation 
algorithm that solved a system of functions adapted 
from Fortier's (1992) best linear corrector (see Fortier 
1999 for details). These proportions or probabilities of 
occurrence finally served as priors for a Bayesian 
classification of the pixels pertaining to a given 
peatland polygon. Therefore, the WML approach was 
a contextual approach that proceeded on a per-peatland 
basis, as opposed to the ML approach, which 
conducted the classification on a per-pixel basis over 
the entire image in a single step. The two 
classifications were performed using the CEPIX 
module of the SURVOL software package (Fortier and 
Careau 2000). The last image-processing step 
consisted of rectifying the classified image to a 
Universal Transverse Mercator map projection using a 
nearest-neighbor resampling method (Richards and Jia 
1999).  

Validation of the habitat maps 

We validated the results of the two image 
classifications based on a "blind" ground-truthing that 
spanned the entire summer of 2000. During that 
period, we visited 92 peatlands within the study area 
and nonsystematically recorded 626 DGPS locations 
using a Trimble Pathfinder Geoexplorer III. We 
associated a habitat class with each of these locations 
in the field by visual identification. This was 
consistent with how we categorized the training sites, 
that is, qualitatively instead of quantitatively using 
vegetation surveys.  

To assess the performance of our image 
classifications, we then built an error matrix that 
compared the habitat classes identified in the field for 
each of the 626 DGPS locations with those classified 
on the image using each classification method. We 
could not calculate classification errors on a pixel-by-
pixel basis (Congalton 1991) because (1) according to 
40 checkpoints in the field, there were mean (± SD) 
spatial errors of -1.6 pixels along the east-west axis 
and 2.0 pixels along the north-south axis on the 
georeferenced classified image, and (2) the peatland 
habitats were so narrowly defined that they rarely 
occurred as large, pure, homogeneous zones. We 
therefore considered an area of 3 x 3 pixels, for which 
the bottom-right pixel corresponded to each of the 
DGPS locations transferred on the georeference-

classified image, and contrasted the habitat class 
identified in the field with the percent cover of each 
habitat class found within the reference zone of 3 x 3 
pixels (0.8 ha). It should be noted that this area was 
smaller for DGPS locations that occurred near the 
edges of peatlands. Because we considered nine pixels 
on the classified image to be comparable to the habitat 
identification made on a one-pixel basis in the field, 
we could not calculate commission errors, i.e., verify 
if the habitat class attributed to each classified pixel 
corresponded to the habitat class determined in the 
field. On the other hand, we could still assess the 
likelihood of omission errors, i.e., the incapacity of the 
classification method to detect the occurrence of a 
habitat class in the field.  

We assessed the accuracy of our classification method 
using an additional procedure that compared the 
accuracy of the results obtained at the 626 DGPS 
validation locations with that of the results we would 
have obtained if the reference zones had been 
randomly distributed among all the peatland polygons. 
This comparison was intended to show how likely we 
were to get results as good as the ones we obtained just 
by chance. More specifically, we calculated how many 
of the 14,030 random reference zones and how many 
of the 626 real reference zones had no, one, two, and 
up to nine pixels of each habitat class. We then built 
relative-frequency distribution curves that compared 
the probabilities that each habitat would occur in a 
given amount in squares measuring 3 x 3 pixels that 
corresponded to our validation locations and in 
randomly sampled squares.  

Vegetation surveys 

Even very accurate maps do not necessarily provide 
information on how well habitat classes depict the 
diversity of plant species. For this reason, we carried 
out detailed vegetation surveys for each of the 13 
habitats to determine whether our maps could be 
regarded as reliable indicators of the occurrence of 
particular plant species. Vegetation surveys were 
conducted from 6 June to 7 September, 2000. In total, 
252 pixels (mean ± SD = 19.4 ± 0.7 pixels per habitat 
class) were randomly sampled in 92 different 
peatlands. For a pixel to be chosen, it had to be 
surrounded by at least eight pixels of the same habitat 
class to avoid confounding effects due to spatial error 
in the field. Site accessibility and field sampling 
efficiency were additional constraints when selecting 
the pixels to be sampled, which we located in the field 
using a DGPS receiver.  
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For each pixel sampled, we evaluated the vegetation 
structure in a 20 x 20 m quadrat. Vegetation structure 
was defined based on 17 strata: water, litter, upright 
mosses, horizontal mosses, liverworts, lichens, three 
Sphagnum sections (Acutifolia, Cuspidata, 
Sphagnum), ericaceous shrubs, Carex, other sedges 
and forbs, shrubs, birch, pine, spruce, and larch. We 
estimated the percent cover of these vegetation strata 
visually while walking across the entire 400-m2 
quadrat. Percent cover was assigned to one of seven 

classes: present, 1�5, 6�10, 11�25, 26�50, 51�75, and 
76�100%. The midpoint of each class was used in 
statistical analyses. We also sampled plant species 
composition by estimating the percent cover of each 
species, including mosses, liverworts, and lichens, to 
the nearest 1% in three circular plots of 0.65 m2 that 
were nonsystematically distributed within the sampled 
pixel. We chose these plots by throwing three plastic 
rings in different directions within the 20 x 20 m 
sampled area. 

 

Fig. 3. Venn diagrams representing variance partitioning among the three groups of explanatory variables, namely habitat 
classes, environmental measures, and spatial variables, using ordination methods. Canonical correspondence analysis (CCA) 
and redundancy analysis (RDA) were used to model the relationships between species composition (93 species) or vegetation 
structure (18 strata/groupings) and explanatory variables, respectively. Habitat classes are defined in Table 1. The 15 
environmental variables (Env. var.) considered included the depth of the water table; shade cover on ground layer by herbs, 
sedges, shrubs, and trees; the height of the four tallest trees around each 0.65-m2 plot; the pH of the surface water; the water 
chemistry of the surface water; and the concentrations of K+, Na+, Ca++, Mg++, Fe++, Al+, P, NO3

-, NH4
+, and SO4

-. The first 
three variables were originally measured in each of the three 0.65-m2 plots contained in the 20 x 20 m pixel quadrat for the 
species composition ordination, and then averaged on a pixel quadrat basis (n = 252 quadrats) for the vegetation structure 
ordination. Water samples were kept frozen at -4ºC until pH and chemical component concentrations were measured in the 
laboratory. Chemical conductivity was measured in the field and corrected for H+ activity according to Sjørs (1952). Water 
samples were filtered before testing for chemical elements and isotopes. Concentrations of K+, Na+, Ca++, Mg++, Fe++, Al+, 
and P were measured by atomic emission using a model P40 Perkin-Elmer inductively coupled plasma mass spectometer. 
Concentrations of NO3

-, NH4
+, and SO4

- were measured using the flow injection analysis method with a Lachat 
Quickchem4000. The spatial variables (Spatial var.) were Universal Transverse Mercator coordinates. Their weak 
explanatory power indicates that there was no geographic bias in the vegetation sampling effort.  

Vegetation data analysis 

We used a partial ordination approach to assess how 
well the habitat classes defined a priori for this study 
reflected the vegetation patterns we observed in the 
field. More specifically, partial ordinations allowed us 
to partition the amount of variation in species 

occurrence and vegetation structure that could be 
accounted for by the 13 habitat classes defined a priori 
as well as by certain environmental and spatial 
variables (Borcard et al. 1992, Legendre and Legendre 
1998) such as the depth of the water table, shade 
cover, tree height, and water chemistry; please see the 
caption of Fig. 3 for a detailed list. We used Canonical 
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Correspondence Analysis (CCA) and Redundancy 
Analysis (RDA) to model the relationship between 
species composition or vegetation structure and the 
explanatory variables such as habitat classes and 
environmental and spatial variables, respectively. 
Ordinations were computed using Canoco 4.0 (ter 
Braak and �milauer 1998). We based our decision 
about which type of ordination to run on the results of 
a Detrended Correspondence Analysis (DCA) that 
showed a large gradient for species data (maximum 
length of 5.0) and a small one for vegetation structure 
data (maximum length of 1.8). Ordination methods 
were thus based on two assumptions for responses to 
environmental variables and on two corresponding 
approaches to modeling the species and structural data: 
a unimodal response with CCA and a linear response 
with RDA, respectively. We omitted species that had 
fewer than three occurrences in CCA and log-
transformed cover values in CCA and RDA. 
Environmental variables related to chemical 
component concentration were log-transformed for 
both the species (CCA) and the structure (RDA) data 
analyses. The RDA runs were centered and 
standardized by species, but not by samples (ter Braak 
and �milauer 1998).  

We used the sample scores from the CCA to construct 
a plot showing the distinctiveness and of the habitat 
classes based on their species assemblages. We also 
produced a species bi-plot to identify which 
environmental variables and individual species were 
associated with the most distinct habitat classes. For 
the sample plot and the species bi-plot, we focused the 
scaling on intersample and interspecies distances, 
respectively (ter Braak and �milauer 1998). 

RESULTS 

The mask procedure revealed 629 peatland polygons 
covering a total of 18,103 ha. As seen in Fig. 2, 74% 
of these polygons were smaller than 20 ha, with 328 of 
them covering approximately 10 ha and 135 covering 
between 10 and 20 ha. In addition, 124 (20%) 
peatlands were between 20 and 100 ha and 27 (4%) 
between 100 and 200 ha. Only 15 (2%) peatlands were 
larger than 200 ha, with the largest one covering 756 
ha. Fig. 1 shows some examples of peatlands classified 
using both the maximum likelihood (ML) and the 
weighted maximum likelihood (WML) procedure. The 
WML method, which tended to agglomerate isolated 
pixels, did not produce as much of a "salt and pepper" 
effect as did the ML classification.  

Validation of the habitat maps 

We found that the habitat maps produced by the two 
classification procedures provided a good representation 
of the the habitats we had identified when we visited the 
sample of 92 peatlands. The results of the ML method 
are presented in Table 2, and those of the WML method 
are given in Table 3. According to the diagonal entries 
indicating correct classifications, all but one of the habitat 
classes we identified in the field (represented in the 
columns) corresponded to the dominant habitats 
classified in the corresponding 3 x 3 pixel zones 
(represented in the rows in Table 2). For example, 54% 
of the 258 pixels corresponding to the 33 locations 
identified as spruce forest with open canopy (SprFor) in 
the field were classified as such on the satellite image, a 
result that is far from negligible when we consider the 
habitat heterogeneity that characterizes the peatland we 
surveyed and the extent of the reference zone (Table 2). 
Lawn with pools (LawnPool) was the only habitat for 
which the most abundant classified habitat in the 
reference zones was not of the same type, probably 
because this habitat was restricted in its distribution and 
rarely covered areas measuring more than 3 x 3 pixels.  

Not only was there good agreement between the habitats 
identified in the field and the corresponding classified 
habitats, but also, when there was a lack of fit, it was 
usually biased toward habitats that are structurally alike. 
For instance, for the 57 DGPS positions identified in the 
field as spruce thickets (Spr), the other most abundant 
habitats classified with the ML procedure in the 
corresponding 43 ha were herbs with spruce thickets 
(HerSpr), ericaceous shrubs with spruce thickets 
(EriSpr), and SprFor; of all the other habitats, these are 
the most similar to Spr (Table 2).  

Independently of the classification procedure (ML or 
WML), three pairs of habitats seemed to be easily 
confused with each other: ericaceous shrubs with larch 
(EriLar) and larch with ericacious shrubs (LarEri), 
herbs (Herb) and herbs with larch (HerLar), and spruce 
thickets with pools (SprPool) and SprFor (Tables 2 
and 3). We believe that part of this confusion results 
from the tendency of these habitats to occur together. 
The two habitats representing larch with herbs 
(LarHer) and LawnPool are the ones that showed the 
weakest fit with classified habitats, but again this 
resulted partly from the fact that these habitats rarely 
covered an extensive area, so that it was normal to get 
some contamination within the reference zone of 3 x 3 
pixels.  
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Table 2. Error matrix based on 626 Differential Global Positioning System (DGPS) locations for the validation of 13 
peatland habitats classified using a maximum likelihood function method. Each of the 626 DGPS positions is compared to a 
reference zone of 3 x 3 pixels on the classified image. The bottom-right pixel of these reference zones corresponded to the 
DGPS validation location. Numbers represent, for each habitat type recognized in the field (columns), the percentage of 
pixels in the corresponding reference zones classified in each habitat class (rows). Diagonal entries indicate correct 
classification. The number of pixels considered on the classified image for all of the 626 DGPS positions is given in the 
second-to-last row. Some reference zones located near a peatland edge were less than 9 pixels (0.81 ha) in size, which 
explains why the number of pixels is not always a multiple of 9. Numbers in brackets correspond to the number of DGPS 
positions for each habitat class. Codes are defined in Table 1.  
 

  SprFor Eric Herb TSedge Spr EriSpr HerSpr LarEri EriLar LarHer HerLar SprPool LawnPool   

SprFor 54 0 1 2 11 6 4 2 4 4 4 32 1   
                
Eric 3 47 6 1 2 8 0 5 13 5 3 1 4   
                
Herb 0 1 35 18 3 1 11 3 0 8 10 0 9   
                
TSedge 2 8 14 43 3 2 8 1 2 12 7 2 28   
                
Spr 18 2 2 6 47 10 16 0 2 7 3 8 10   
                
EriSpr 3 20 3 6 11 48 5 2 7 1 5 0 3   
                
HerSpr 3 3 9 6 16 8 43 3 6 9 8 0 5   
                
LarEri 9 6 1 1 1 3 0 66 21 8 4 1 4   
                
EriLar 1 7 0 0 1 4 0 9 40 6 5 0 0   
                
LarHer 5 2 6 7 4 8 6 7 2 26 14 2 1   
                
HerLar 0 4 23 9 2 1 4 4 3 11 35 0 8   
                
SprPool 1 0 0 1 0 0 2 0 0 2 0 51 6   
                
LawnPool 0 0 0 2 0 0 0 0 0 0 0 4 20   
                
Number 
of pixels 258 586 454 363 479 481 636 239 262 449 595 169 159   
                
DGPS 
locations 33 68 54 43 57 56 77 36 33 58 72 20 19   
                

 
 

Although the two classification procedures led to 
similar overall error matrices, there were some 
differences based on the individual habitat classes. 
When comparing the numbers on the diagonal between 

the matrices in Tables 2 and 3, it can be seen that the 
WML procedure (Table 3) classified some habitats, 
usually common ones, more accurately than others 
(Fig. 4). This is because the WML classification 
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procedure takes into account the proportion of each 
habitat within a peatland polygon when calculating the 
probability that a pixel will be classified as a certain 
habitat type. This means that, when a habitat class is 
rare, the probability that a pixel will be classified as 

this habitat class is lower than if its relative abundance 
was not taken into account. However, the WML 
procedure had the advantage of eliminating the 
isolated pixels that were common in the classification 
resulting from the ML procedure (Fig. 1). 

 

Table 3. Error matrix based on 626 Differential Global Positioning System (DGPS) habitats using a maximum likelihood 
function weighted by the proportion of each habitat class within peatlands. Please see the caption of Table 2 for details.  
 

  SprFor Eric Herb TSedge Spr EriSpr HerSpr LarEri EriLar LarHer HerLar SprPool LawnPool   

SprFor 59 1 1 2 13 9 5 0 1 3 3 43 6   
                
Eric 3 53 9 1 1 8 0 10 11 5 6 1 4   
                
Herb 2 1 28 17 1 1 10 3 0 7 8 0 6   
                
TSedge 2 8 12 45 2 2 7 0 2 12 7 4 30   
                
Spr 13 1 2 6 45 6 16 0 3 10 2 8 8   
                
EriSpr 3 20 3 5 15 54 6 4 5 1 1 0 0   
                
HerSpr 0 2 12 5 17 7 46 3 6 5 8 1 5   
                
LarEri 9 7 1 1 1 3 0 71 31 9 5 1 4   
                
EriLar 0 2 1 0 0 3 0 0 32 3 1 0 0   
                
LarHer 4 2 6 6 3 3 5 3 3 27 9 1 3   
                
HerLar 5 5 26 12 2 4 3 6 7 16 51 0 12   
                
SprPool 1 0 0 0 0 0 2 0 0 2 0 41 13   
                
LawnPool 0 0 0 0 0 0 0 0 0 0 0 1 11   
                
Number 
of pixels 258 586 454 363 479 481 636 239 262 449 595 169 159   
                
DGPS 
locations 33 68 54 43 57 56 77 36 33 58 72 20 19   
                

 
 

The reference zones contained more classified pixels 
of the habitat class identified in the field than could be 
expected by chance (Fig. 5). For example, although 
only 20% of the pixels in the reference zones were 

classified as LawnPool when this habitat class was 
identified in the field (Table 2), 50% of these reference 
zones had between one and six pixels classified as 
LawnPool habitat. In contrast, it was very unusual to 
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Vegetation data analysis obtain more than one pixel of LawnPool habitat when 
randomly sampling the peatlands. This situation 
occurred for all habitat classes. Among the 252 pixels sampled in the field, we 

recorded a total of 128 species (Appendix 2). When all 
three groups of explanatory variables, i.e., habitats, 
environmental variables, and spatial variables, were 
considered, 31.9% of the variation in species 
abundance could be explained, compared to 49.9% for 
the structure data (Fig. 3). This difference stems partly 
from the fact that there were 93 species but only 17 
structure classes. Noise caused by quadrats in which a 
species was rare or absent was thus more important in 
the species data than in the structure data. The 
unbalanced number of response variables between the 
species and the structure data sets therefore prevented 
the direct comparison of the amount of variation 
explained by the habitat classes for these two data sets. 
We accordingly had to quantify the explanatory power 
of the habitat classes on a relative basis with the 
environmental and spatial variables.  

 

Fig. 4. Difference in accuracy between the maximum 
likelihood (ML) and the weighted maximum likelihood 
(WML) classification procedures as a function of habitat 
rarity. Negative numbers indicate that, for a specific habitat, 
well-classified pixels were less numerous for the WML 
procedure than for the ML procedure and vice versa. Rarity 
is expressed as the percentage of the total peatland area 
covered by each habitat class. Data points have been 
replaced by numbers referring to the habitat classes; see 
Table 1 for descriptions. Spearman correlation coefficient 
(rs) = 0.57, P = 0.043. 
 

Variance partitioning via canonical correspondence 
analysis (CCA) revealed that, of the 31.9% of the 
variation in the species data explained by the three 
groups of variables, 9.6% could be attributed solely to 
habitat classes, 9.5% to environmental variables, and 
only 0.9% to spatial variables; the three groups shared 
1.5% of the variation (Fig. 3). For the structure data 
analysis, redundancy analysis (RDA) showed that, of 
the 49.9% of the total variation explained by the three 
groups of variables, up to 14.3% could be attributed 
solely to habitat classes, compared to 8.7% for 
environmental variables and only 1% for spatial 
variables; the three groups shared 3.1% of the 
variation (Fig. 3). These results indicate that the 13 
habitat classes defined a priori were as good as the 15 
environmental variables at explaining species 
distribution, whereas, for vegetation structure patterns, 
the habitat classes performed 1.6 times better than did 
the environmental variables.  

 
 

Both image classifications were probably more 
accurate than suggested by analysis of the error 
matrices, because on occasion habitats were 
misclassified in the field. To assess these potential 
field identification errors, three persons independently 
assessed the habitat class at 427 of the 626 validation 
locations. All three observers disagreed on the 
classification of 18 (4%) of these locations, whereas 
two observers agreed on 117 (27%), and all three of 
them were in agreement on 292 (69%). These 
agreement rates were better than those that could be 
expected by chance, with Cohen's kappa indices 
ranging from 0.61 to 0.79 for pairwise comparisons 
(Agresti 1996). The assessments by the most 
experienced fieldworker were used for the analyses. 
Given this additional information, we are confident 
that our validation method based on reference zones 
was appropriate.  

According to the CCA, the six habitats dominated by 
ericaceous shrubs or forested habitats were similar in 
terms of their species assemblages (Graph A in Fig. 6). 
For example, species common to all these groups were 
Kalmia angustifolia, Ledum groenlandicum, 
Polytrichum strictum, Sphagnum fuscum, and S. 
capillifolium (Graph B in Fig. 6, Appendix 2). Habitats 
with pools (SprPool, LawnPool) and associated 
species Drosera rotundifolia, Nuphar lutea ssp. 
variegata, Rhynchospora alba, Utricularia cornuta, 
Cladopodiella fluitans, and Sphagnum cuspidatum 
were well-separated from the previous group.  
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Fig. 5. Cumulative relative distributions of the number of pixels of each habitat type, as classified by the maximum 
likelihood (ML) classification in 14,030 squares measuring 3 x 3 pixels sampled randomly among all peatlands (black 
squares) and in squares measuring 3 x 3 pixels in which the bottom-left pixel corresponded to one of the 626 validation 
locations (black circles). The area between the two curves is proportional to the improvement of the classification over a 
random distribution of habitat classes. Because both classification procedures gave similar results, we present the frequency 
distribution curves for the ML procedure only. Habitat codes are defined in Table 1.  
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Although there was less contrast than in habitats with 
pools, habitats with herbs also presented quite distinct 
species assemblages, especially the habitats designated 
as Herb, tall sedges, and LarHer (Graph A in Fig. 6, 
Appendix 2). These herb-dominated habitats tended to 
be richer in mineral elements such as Ca++, Mg++, and 
Fe++, less acidic, and wetter than other habitats, which 
favored vascular species such as Carex exilis, C. 
limosa, Menyanthes trifoliata, Pogonia 
ophioglossoides, and Scheuchzeria palustris as well as 
Sphagnum species including S. fallax, S. majus, and S. 
papillosum (Graph B in Fig. 6; Appendices 1, 2, and 
3). Herb-dominated habitats were also the most 
variable, as shown by the error bars in Graph A of Fig. 
6. In contrast, the species composition of habitats 
dominated by ericaceous shrubs was more likely to be 
predicted. Even though the habitat LarEri was not 
highly distinct from the rest of the habitats, it tended to 
be located near the edges of the peatlands. 
Consequently, this type of habitat was richer in base 
cations as measured by higher concentrations of Ca++, 
and it sheltered species such as Nemopanthus 
mucronatus and Viburnum nudum var. cassinoides 
(Graph B in Fig. 6, Appendices 2 and 3). 

DISCUSSION 

To our knowledge, this study is one of the first to 
produce a high-resolution map of peatland habitats 
using satellite imagery. Our results show that it is 
possible to map as many as 13 peatland habitats with 
Landsat 7/ETM+ data and to represent peatland 
vegetation with a level of accuracy that is probably 
compatible with regional investigation and 
conservation objectives. Moreover, our classification 
methodology, which included the use of a masking 
procedure to isolate peatland polygons from the rest of 
the image before classifying within-peatland habitats, 
made it possible to characterize small peatlands (< 40 
ha) that would have been ignored by the traditional 
field surveys used to produce peatland atlases (e.g., 
Buteau 1989). However, our study also indicates a 
need for caution when associating peatland habitats 
with polygons smaller than 10 ha, because some land-
cover types can produce a similar radiance and thus 
introduce noise into the mapping process. For instance, 
we noted that we had mistakenly classified as peatland 
habitat certain small polygons located under 
hydroelectric lines or on river banks that had only a 
few of the characteristics of peatland, e.g., moist 
ground with several patches of sphagnum moss. For 

this reason, more detailed ground-truthing should be 
conducted before small peatland polygons can be 
considered as potential conservation units. 
Nevertheless, small polygons should not be ignored 
for peatland conservation purposes, because small 
peatlands can have a great diversity of plant species; 
kettle holes (e.g., Lindholm and Vasander 1983) are a 
good example of this.  

Maximum likelihood vs. weighted maximum 
likelihood:  
comparing the classification procedures 

For our purposes, the weighted maximum likelihood 
(WML) procedure, a contextual classifier that takes 
into account the radiance value of the surrounding 
pixels, was, on the whole, no more accurate than the 
standard maximum likelihood (ML) approach; both 
classification methods had approximately the same 
overall level of accuracy. Similarly, studies that used a 
contextual classifier (e.g., Thunnissen et al. 1992, 
Hubert-Moy et al. 2001) generally improved their 
accuracy by only a few percentage points. However, in 
our case, common habitats were more accurately 
classified using the WML procedure, whereas rare 
habitats were better represented using the ML 
procedure. This was partly because the WML 
procedure led to a more homogeneous classification 
that contained fewer isolated pixels or small clusters of 
pixels of any given habitat class. Because of the spatial 
error in the georeferenced classification, we could not 
assess directly through our validation procedure 
whether the loss of these individual pixels constituted 
an improvement or not. However, based on our field 
experience, we believe that some habitats are unlikely 
to occur on an individual-pixel basis within a 
contrasting habitat class, especially if their 
hydrological states are different. Consequently, even 
though the WML procedure underestimates the rarest 
habitats, it avoids mapping less probable habitats and 
eliminates salt-and-pepper noise. When it comes to the 
identification of potential conservation units, the 
WML classification procedure is preferable, because it 
avoids classifying rare habitats whose spectral 
distinctiveness is not high enough to compensate for 
their small extent. Given that most conservation 
approaches aim to maximize the complementarity of 
sites (Pressey et al. 1993), the site-selection algorithms 
would then have to search for the sites in which rare 
habitats are more extensive, ensuring that the whole 
range of habitats is more likely to be preserved. 
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Fig. 6. Influence of habitat classes and environmental measures on the composition of the 93 species quantified in the 252 
pixel-based vegetation quadrats. Graph A is a canonical correspondence analysis (CCA) ordination plot showing the mean (± 
SE) of sample scores for each habitat class (19 ≤ n ≤ 21 pixel vegetation quadrats per habitat class). Graph B is a CCA 
ordination bi-plot showing the scores for species and environmental variables; these variables are defined in Fig. 3. The first 
and second axes explained 7.3 and 5.9% of the variation, respectively. Genus and species codes are defined in Appendix 2. 
Species are displayed according to their fit and weight (�milauer 1992). Habitats are defined in Table 1 and represented by 
numbers 1 through13. Species listed at the bottom left of Graph B correspond to the unlabeled point in the center of the bi-
plot.  
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Validation constraints 

The combined problems of the high heterogeneity of 
peatland habitats at small spatial scales (< 1 ha) and of 
spatial error on the classified georeferenced image 
prevented us from conducting the accuracy assessment 
(i.e., building an error matrix) on a pixel-by-pixel 
basis. Aaviksoo et al. (2000), who faced the same 
problems when classifying 11 peatland habitats in 
Estonia, opted not to evaluate systematically the 
accuracy of their classification and gave only 
approximate estimations. We first tried to circumvent 
the problem of location error by placing the field 
validation points in relatively homogeneous zones, and 
this technique, even though it limits the assessment to 
homogeneous zones, can lead to positively biased 
results (Hammond and Verbyla 1996). However, we 
did not succeed using this strategy, because most of 
our validation points were in heterogeneous zones 
containing at least two classes of habitats. In fact, our 
random sampling of 14,030 squares of 3 x 3 pixels on 
the image classified using the ML procedure and 
corresponding to 0.8 ha in the field showed that only a 
small proportion (13%) of these reference zones 
contained only one habitat class. To our knowledge, 
very few published studies have conducted 
classification work with such a large number of 
heterogeneous classification units.  

Studies on classification accuracy assessment have 
acknowledged that spatial errors can lead to an 
underestimation of the spectral accuracy of classified 
images, particularly in the presence of a large number 
of heterogeneous classification units (Hammond and 
Verbyla 1996, Stehman and Czaplewski 1998). 
Despite this, only cluster sampling has so far been 
used to compensate for the impossibility of assessing 
the accuracy of a classification on a pixel-by-pixel 
basis (Cibula and Nyquist 1987, Stenback and 
Congalton 1990, Watson and Wilcock 2001). This 
method is, in fact, pseudo-cluster sampling and not 
true cluster sampling, which is used to reduce the costs 
of evaluating map accuracy (Todd et al. 1980, Martin 
1989, Martin and Howarth 1989, Stehman and 
Czaplewski 1998). It consists of sampling clusters of 3 
x 3 or 5 x 5 classified pixels and considers the latter 
properly classified when the dominant class of the 
clusters, or at least one pixel of the clusters, 
corresponds to the class observed in the field. This 
"dichotomized" categorization of clusters, however, 
does not take advantage of the information conveyed 
by the specific composition of the clusters (i.e., the 
amount of cover of each class in a cluster). Again, in 

our efforts to circumvent the spatial error problem, we 
applied a method that compared the likelihood of 
observing a certain amount of a given habitat class in 
the clusters used to validate the classifications and in 
clusters selected at random from all the peatland 
polygons. These comparisons indicated that the 
validation clusters contained more of the targeted 
habitat than did randomly selected clusters; this was 
the case for all of our habitat classes, which increased 
our confidence that our error matrices were 
meaningful. This additional analysis conducted to 
complement our nonstandard error matrices can be 
seen as one answer to Congalton's (1996: 127) plea 
that " ... work is needed to go beyond the error matrix 
and introduce techniques that build upon the 
information in the matrix and make it more 
meaningful ... "  

Vegetation patterns 

Because ecological mapping procedures based on 
supervised classification involve the definition of 
habitat classes a priori, they are inevitably somewhat 
subjective. Even though supervised classification 
techniques are widely applied in remote sensing 
studies, the explanatory power of the different habitat 
classes with respect to relevant ecological attributes 
such as species composition or vegetation structure is 
rarely quantified. We nevertheless are of the opinion 
that such an evaluation is critical if the results of the 
classification are going to be applied to land 
management or conservation problems. The detailed 
vegetation surveys we conducted enabled us to 
proceed with this type of assessment, which revealed 
that the 13 habitat classes were defined precisely 
enough to explain a large part of the variation in plant 
species assemblages and vegetation structure at least 
as effectively as this variation could be accounted for 
by the 15 measured environmental variables. We 
therefore believe that our habitats are good surrogates 
for peatland management and conservation purposes, 
at least with regard to vegetation diversity.  

In addition, the detailed vegetation surveys allowed us 
to determine the range of variation among habitats in 
terms of plant species assemblages and vegetation 
structure. This information is of considerable value 
when it comes to deciding whether all habitats deserve 
an equal level of protection and determining the 
amount of habitat to set aside for conservation. In fact, 
information about the distinctiveness and variability of 
habitats can be coupled with other criteria, such as 
habitat rarity and vulnerability, to derive some habitat-
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Another important issue that affects the meaningful 
application of the results of ecological maps is that 
habitat classes reflect ecological attributes that are 
relevant to the land management and conservation 
problems at hand. Along these lines, our ordination 
approach revealed that the peatland habitats defined a 
priori for the supervised classification procedures were 
representative of the species distribution and 
vegetation structure patterns in the peatlands of the 
mid-St. Lawrence plain of southern Quebec. Finally, 
and perhaps more importantly, our results are readily 
accessible to land planners and conservationists 
seeking to establish nature reserve networks. Indeed, 
many of the site-selection algorithms developed during 
the past two decades require this type of spatial 
database (Pressey et al. 1995, Pressey and Taffs 2001). 
Furthermore, this need is likely to increase because 
new site-selection algorithms that take into account the 
persistence of populations are currently being 
developed and will ultimately require spatially explicit 
data (Cabeza and Moilanen 2001). 

specific weighting factor that can be used to set 
conservation targets, such as the proportion of initial 
habitat cover to be protected (see Pressey and Taffs 
2001). For example, peatland habitats with pools 
might be favored if conservation procedures were to 
be be implemented in our study area because of their 
high distinctiveness and low aerial extent (Poulin et al. 
1999). Moreover, preference might also be given to 
habitats dominated by herbs, especially to the classes 
for herbs (Herb), tall sedges (TSedge), and larch with 
herbs (LarHer), because they are relatively distinct and 
present more variation in their species composition. 
This variation might complement species diversity as a 
measure to be taken into account for conservation 
purposes, because these two variables are not 
necessarily correlated. Indeed, Vitt et al. (1995) found 
that, although fens were not individually richer in 
bryophyte species than bogs, there was more 
variability from site to site, leading to a higher 
diversity of species when a group of fen sites is 
considered. In our case, more peatlands containing 
herb habitats should be preserved if we want to capture 
the different species associated with their high β 
diversity (Whittaker 1977, Noss 1983). Consequently, 
detailed surveys not only help to assess classification 
accuracy but also provide an additional tool when 
setting conservation priorities to maximize 
biodiversity in selected reserves. Because peatlands 
are dynamic systems evolving in time from fens to 
bogs, successional sequences should also be 
considered when planning conservation actions.  

Responses to this article can be read online at: 
http://www.consecol.org/vol6/iss2/art16/responses/index.html 
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CONCLUSION 

The final product of classification studies like this one 
is a map of landscape features, in our case 13 peatland 
habitats classified on the basis of Landsat 7/ETM+ 
data. Although we obtained quite similar results 
whether we used conventional or weighted 
classification procedures based on maximum 
likelihood (ML) functions, the weighted maximum 
likelihood (WML) procedure was found to classify 
common habitats more accurately than the ML 
procedure, and the converse was true for rare habitats. 
Nevertheless, we believe that the WML procedure is 
more reliable when it comes to the identification of 
potential conservation units, because it provides a 
more robust identification of rare habitats and thus 
minimizes the chance of misallocating protected sites. 
Moreover, as sensor spatial resolution improves, 
contextual classifiers will become standard procedures 
to avoid an increase in the salt-and-pepper effect.  
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APPENDIX 1 

Sample photographs and descriptions of the habitat classes defined a priori that were used for the supervised 
classifications. Habitat codes are defined in Table 1, and botanical codes are provided in Appendix 2.  

 

SprFor (H1): Habitat dominated by spruce trees (Pic mar). This 
was the most forested habitat and represents a forested peatland 
with scattered openings. Nem muc and Kal ang were dominant in 
the lower vegetation layers. ANG and MAG were the main 
Sphagna. Ple sch was abundant.  

  

 

Eric (H2): Habitat dominated by ericaceous shrubs, particularly 
Kal ang, Cam cal, and Led gro. Eri spi was present between 
hummocks.  
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Herb (H3): Habitat dominated by herbs that were not too dense 
and included forbs (i.e., herbs not shaped like grasses) and sedges 
(Cyperaceae). Car oli, Smi tri, and Eri spi were the main herbs; 
RUB, CAP, and FAL, the main Sphagna.  

  

 

TSedge (H4): Habitat dominated by dense sedges. Car oli, Rhy 
alb, Car exi, and Car lim were the main sedge species. Cla flu was 
an abundant liverwort that sometimes formed dark patches.  

  

 

Spr (H5): Habitat dominated by spruce thickets (Pic mar). Kal ang, 
Led gro, and Car tri were dominant between spruce thickets. ANG, 
MAG, RUB, and CAP were the main Sphagna.  

  

 

EriSpri(H6): Habitat dominated by ericaceous shrubs with sparse 
spruce thickets (Pic mar). The ericaceous shrubs were represented 
mainly by Kal ang and Cha cal. The main Sphagna were CAP, 
FUS, and ANG.  
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HerSpr (H7): Habitat dominated by herbs with sparse spruce 
thickets (Pic mar). Eri spi, Eri ang, Eri vir, Car tri, Rhy alb, and 
Smi tri were the main herbs, and RUB, CAP, and FUS were the 
main Sphagna.  

  

 

LarEri (H8): Habitat dominated by larch (Lar lar) and ericaceous 
shrubs. Nem muc, Rho can, and Cam cal were the main shrubs; 
ANG and FAL, the main Sphagna.  

  

 

EriLar (H9): Habitat dominated by ericaceous shrubs and sparse 
larch (Lar lar). Kal ang, Cha cal, and Led gro were the main 
ericaceous shrubs; ANG, CAP, FUS, and FAL, the main Sphagna.  

  

 

LarHer (H10): Habitat dominated by larch (Lar lar) and herbs. 
Smi tri, Car lin, Car oli, Men tri, Car exi, Car str, and Rhy alb were 
the main herbs; FAL, ANG, and MAG, the main Sphagna.  
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HerLar (H11): Habitat dominated by herbs and sparse larch (Lar 
lar). Car oli, Car str, Smi tri, and Eri spi were the main herbs. RUB, 
FAL, ANG, MAG, and CAP were the main Sphagna.  

  

 

SprPool (H12): Habitat dominated by spruce thickets and pools. 
Kal ang, Gay bac, and Cam cal were the main ericaceous shrubs; 
Rhy alb, the main herb; and CAP, MAG, and CUS, the main 
Sphagna. Cla flu was an abundant liverwort.  

  

 

LawnPool (H13): Habitat characterized by lawns and pools. Utr 
cor, Mai can, Car pauc, and Sch pal were the main herbs. Aro mel 
and Vib cas were abundant. PAP, ANG, and CAP were the main 
Sphagna.  

  
 

 

APPENDIX 2 

 

Table A2.1. List of all species recorded in 252 sampled pixels distributed in 92 peatlands. Nomenclature follows Esslinger 
and Egan (1995) for lichens, Stotler and Crandall-Stotler (1977) for liverworts, Anderson (1990) for Sphagnum mosses, 
Anderson et al. (1990) for other mosses, and Kartesz (1994) and Brummit and Powell (1992) for vascular plants. 

 

Code Genus/species Authors Group Family        

Ace rub Acer rubrum L. Trees and shrubs Aceraceae        
            

And pol Andromeda polifolia 
var. glaucophylla (Link) DC. Ericaceous plants Ericaceae        
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ANG Sphagnum angustifolium (C. Jens. ex Russ.) 
C. Jens. in Tolf. Sphagnum mosses Sphagnaceae        

            
Aro mel Aronia melanocarpa (Michx.) Ell. Trees and shrubs Rosaceae        
            

Aul pal Aulacomnium palustre (Hedw.) Schwaegr. Mosses other 
than sphagnum Aulacomniaceae        

            
Bet pop Betula populifolia R. S. Marsh. Trees and shrubs Betulaceae        
            
Bet pum Betula pumila L. Trees and shrubs Betulaceae        
            
Cal mue Calypogeia muelleriana (Schiffn.) K. Müll. Liverworts Calypogeiaceae        
            

Cal tub Calopogon tuberosus 
var. tuberosus (L.) B.S.P. Other monocots Orchidaceae        

            
CAP Sphagnum capillifolium (Ehrh.) Hedw. Sphagnum mosses Sphagnaceae        
            
Car cho Carex chordorrhiza Ehrh. ex L. f. Sedges Cyperaceae        
            
Car exi Carex exilis Dewey Sedges Cyperaceae        
            
Car lim Carex limosa L. Sedges Cyperaceae        
            

Car mag Carex magellanica 
ssp. magellanica Lam. Sedges Cyperaceae        

            
Car oli Carex oligosperma Michx. Sedges Cyperaceae        
            
Car pau Carex pauciflora Lightf. Sedges Cyperaceae        
            
Car str Carex stricta Lam. Sedges Cyperaceae        
            
Car tri Carex trisperma Dewey Sedges Cyperaceae        
            
Cep con Cephalozia connivens (Dicks.) Lindb. Liverworts Cephaloziaceae        
            
Cha cal  Chamaedaphne calyculata (L.) Moench Ericaceous plants Ericaceae        
            

Cla chl Cladonia chlorophaea (Flörke ex Sommerf.) 
Sprengel Lichens N/A        

            
Cla con Cladonia conista A. Evans Lichens N/A        
            
Cla cri Cladonia cristatella Tuck. Lichens N/A        
            
Cla flu Cladopodiella fluitans (Nees) Joerg. Liverworts Cephaloziaceae        
            
Cla ran Cladina rangiferina (L.) Nyl. Lichens N/a        
            

Cop tri Coptis trifolia 
ssp. groenlandica (Oeder) Hultén Dicots Ranunculaceae        
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CUS Ehrh. ex Hoffm. Sphagnum mosses Sphagnaceae        
           
Cyp aca Aiton Other monocots Orchidaceae        
           

Dic fus Turn. Mosses other 
than sphagnum Dicranaceae        

           

Dic pol Sw. Mosses other 
than sphagnum Dicranaceae        

           

Dic und Brid. Mosses other 
than sphagnum Dicranaceae        

           

 
Sphagnum cuspidatum 

 
Cypripedium acaule 

 

Dicranum fuscescens 
 

Dicranum polysetum 
 

Dicranum undulatum 
 

Dro rot Drosera rotundifolia L. Dicots Droseraceae        
            
Eri ang Eriophorum angustifolium Honck. Sedges Cyperaceae        
            

Eri vag Eriophorum vaginatum 
var. spissum (Fern.) B. Boivin Sedges Cyperaceae        

            
Eri vir Eriophorum virginicum L. Sedges Cyperaceae        
            
FAL Sphagnum fallax (Klinggr.) Klinggr. Sphagnum mosses Sphagnaceae        
            
FUS Sphagnum fuscum (Schimp.) Klinggr. Sphagnum mosses Sphagnaceae        
            
Gau his Gaultheria hispidula (L.) Muhl. ex Bigelow Ericaceous plants Ericaceae        
            
Gay bac Gaylussacia baccata (Wangenh.) K. Koch. Ericaceous plants Ericaceae        
            
Geo liv Geocaulon lividum (Richardson) Fern. Dicots Santalaceae        
            
Kal ang Kalmia angustifolia L. Ericaceous plants Ericaceae        
            
Kal pol Kalmia polifolia Wangenh. Ericaceous plants Ericaceae        
            
Lar lar Larix laricina (Du Roi) K. Koch Trees and shrubs Pinaceae        
            
Led gro Ledum groenlandicum Oeder Ericaceous plants Ericaceae        
            
Lop het Lophocolea heterophylla (Schrad.) Dum. Liverworts Lophocoleaceae        
            
MAG Sphagnum magellanicum Brid. Sphagnum mosses Sphagnaceae        
            
Mai can Maianthemum canadense Desf. Other monocots Liliaceae        
            
Mai tri Maianthemum trifolium (L.) Sloboda Other monocots Liliaceae        
            
MAJ Sphagnum majus (Russ.) C. Jens. Sphagnum mosses Sphagnaceae        
            
Mel lin Melampyrum lineare Desr. Dicots Scrophulariaceae        
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Men tri Menyanthes trifoliata L. Dicots Menyanthaceae        
            
Myl ano Mylia anomala (Hook.) S. Gray Liverworts Jungermanniaceae        
            
Nem muc Nemopanthus mucronatus (L.) Loes Trees and shrubs Aquifoliaceae        
            

Nup lut Nuphar lutea 
ssp. variegata (Durand) E. O. Beal Dicots Nymphaeceae        

            

Osm cin Osmunda cinnamomea L. Ferns and 
fern-related plants Osmundaceae        

            
PAP Sphagnum papillosum Lindb. Sphagnum mosses Sphagnaceae        
            
Pic mar Picea mariana (Mill.) B.S.P. Trees and shrubs Pinaceae        
            
Pin str Pinus strobus L. Trees and shrubs Pinaceae        
            

Pla ble Platanthera blephariglottis 
var. blephariglottis (Willd.) Lindb. Other monocots Orchidaceae        

            

Ple sch Pleurozium schreberi (Brid.) Mitt. Mosses other 
than sphagnum Hylocomiaceae        

            
Pog oph Pogonia ophioglossoides (L.) Ker Gawl. Other monocots Orchidaceae        
            

Poh nut Pohlia nutans (Hedw.) Lindb. Mosses other 
than sphagnum Bryaceae        

            

Pol com Polytrichum commune Hedw. Mosses other 
than sphagnum Polytrichaceae        

            

Pol str Polytrichum strictum Brid. Mosses other 
than sphagnum Polytrichaceae        

            
Pti cil Ptilidium ciliare (L.) Hampe Liverworts Ptilidiaceae        
            
Rho can Rhododendron canadense (L.) Torr. Ericaceous plants Ericaceae        
            
Rhy alb Rhynchospora alba (L.) Vahl Sedges Cyperaceae        
            
RIP Sphagnum riparium Angstr. Sphagnum mosses Sphagnaceae        
            
RUB Sphagnum rubellum Wils. Sphagnum mosses Sphagnaceae        
            
RUS Sphagnum russowii Warnst. Sphagnum mosses Sphagnaceae        
            
Sal ped Salix pedicellaris Pursh Trees and shrubs Salicaceae        
            
Sar pur Sarracenia purpurea L. Dicots Sarraceniaceae        
            
Sch pal Scheuchzeria palustris L. Other monocots Scheuchzeriaceae        
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Thu occ Thuja occidentalis L. Trees and shrubs Cupressaceae        
            
Tri bor Trientalis borealis Raf. Dicots Primulaceae        
            
Utr cor Utricularia cornuta Michx. Dicots Lentibulariaceae        
            
Vac ang Vaccinium angustifolium Aiton Ericaceous plants Ericaceae        
            
Vac cor Vaccinium corymbosum L. Ericaceous plants Ericaceae        
            
Vac mac Vaccinium macrocarpon Aiton Ericaceous plants Ericaceae        
            
Vac myr Vaccinium myrtilloides Michx. Ericaceous plants Ericaceae        
            
Vac oxy Vaccinium oxyoccos L. Ericaceous plants Ericaceae        
            

War exa Warnstorfia exannulata (Schimp. in B.S.G.) 
Loeske 

Mosses other 
than sphagnum Amblystegiaceae        

            

War flu Warnstorfia fluitans (Hedw.) Loeske Mosses other 
than sphagnum Amblystegiaceae        

            

Vib nud Viburnum nudum  
var. cassinoides (L.) Torr. and A. Gray Trees and shrubs Caprifoliaceae        

            

  
 

Table A2.2. List of elements others than plant species recorded in 252 pixels in 92 peatlands. 

 

Code Element Group          

Bpeat Bare Peat Others          
            
Deadw Dead wood Others          
            
Litter Litter Others          
            
Water Open water Others          

  
 

Table A2.3. List of species not accounted for in Table A2.1 because they occurred in fewer than three pixels. 

 

Code Genus/species Authors Group Family        

Abi bal Abies balsamea (L.) Mill. Trees and shrubs Pinaceae        
            
Aln inc Alnus incana ssp. rugosa (Du Roi) Clausen Trees and shrubs Betulaceae        
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Ast nem Aster nemoralis Aiton Dicots Asteraceae        
            
Baz tri Bazzania trilobata (L.) S. Gray Liverworts Lepidoziaceae        
            

Bra rut Brachythecium rutabulum (Hedw.) Schimp. Mosses other 
than sphagnum Brachytheciaceae        

            

Bro rec Brotherella recurvans (Michx.) Fleisch. Mosses other 
than sphagnum Sematophyllaceae        

            

Bry sp. Bryum sp. Hedw. Mosses other 
than sphagnum Bryaceae        

            
Cal can Calamagrostis canadensis (Michx.) P. Beauv. Grasses Poaceae        
            

Cal sph Calypogeia sphagnicola (H. Arnell and J. Perss.) 
Warnst. and Loeske Liverworts Calypogeiaceae        

            
Car lac Carex lacustris Willd. Sedges Cyperaceae        
            
Car las Carex lasiocarpa Ehrh. Sedges Cyperaceae        
            
Cep lun Cephalozia lunulifolia (Dum.) Dum. Liverworts Cephaloziaceae        
            

Cet del Cetrariella delisei (Bory ex Schaerer) 
Kärnefelt and Thell Lichens N/A        

            
Cla bac Cladonia bacilliformis (Nyl.) Glück Lichens N/A        
            
Cla cen Cladonia cenotea (Ach.) Schaer. Lichens N/A        
            
Cla coo Cladonia coniocraea (Flörke) Sprengel Lichens N/A        
            
Cla dec Cladonia decorticata (Flörke) Sprengel Lichens N/A        
            
Cla mit Cladina mitis (Sandst.) Hustich Lichens N/A        
            
Cor can Cornus canadensis L. Dicots Cornaceae        
            

Dic mon Dicranum montanum Hedw. Mosses other 
than sphagnum Dicranaceae        

            

Dic sco Dicranum scoparium Hedw. Mosses other 
than sphagnum Dicranaceae        

            
Dro ang Drosera anglica Huds. Dicots Droseraceae        
            

Equ flu Equisetum fluviatile L. Ferns and 
fern-related plants Equisetaceae        

            

Equ pal Equisetum palustre L. Ferns and 
fern-related plants Equisetaceae        

 
 

http://www.consecol.org/vol6/iss2/art16


Conservation Ecology 6(2): 16. 
http://www.consecol.org/vol6/iss2/art16 

 
            
Eri ten Eriophorum tennelum Nutt. Sedges Cyperaceae        
            

FIM Sphagnum fimbriatum Wils. in Wils. 
and Hook. f. Sphagnum mosses Sphagnaceae        

            
Gau pro Gaultheria procumbens L. Ericaceous plants Ericaceae        
            

Gly str Glyceria striata 
var. striata (Lam.) A. S. Hichc. Grasses Poaceae        

            
Gym inf Gymnocolea inflata (Huds.) Dum. Liverworts Jungermanniaceae        
            
Ile ver Ilex verticillata (L.) A. Gray Trees and shrubs Aquifoliaceae        
            
Iri ver Iris versicolor L. Other monocots Iridaceae        
            
Kur set Kurzia setacea (Web.) Grolle Liverworts Lepidoziaceae        
            
Lop ven Lophozia ventricosa (Dicks.) Dum. Liverworts Jungermanniaceae        
            

Pla lae Plagiothecium laetum Schimp. in B.S.G. Mosses other 
than sphagnum Plagiotheciaceae        

            

Pti cri Ptilium crista-castrensis (Hedw.) De Not. Mosses other 
than sphagnum Hypnaceae        

            
Pti pul Ptilidium pulcherrimum (G. Web.) Hampe Liverworts Ptilidiaceae        
            
Rub cha Rubus chamaemorus L. Dicots Rosaceae        
            
Rub his Rubus hispidus L. Dicots Rosaceae        
            
Rub pub Rubus pubescens Raf. Dicots Rosaceae        
            
Sci sub Scirpus subterminalis Torr. Sedges Cyperaceae        
            

Spi alb Spiraea alba 
var. latifolia (Aiton) Dippel Dicots Rosaceae        

            

Spl amp Splachnum ampullaceum Hedw. Mosses other 
than sphagnum Splachnaceae        

            

Tom nit Tomenthypnum nitens (Hedw.) Loeske Mosses other 
than sphagnum Brachytheciaceae        

            
Xyr mon Xyris montana Ries Other monocots Xyridaceae        
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APPENDIX 3 

Mean values of six descriptive variables measured in the field for each of the 13 habitats (n = 252 quadrats). 
Shade represents total shade cover (%) of vascular plants over the ground layer. Mean height of trees was 
estimated from the four tallest trees occurring in each of the four quadrants of the sampling pixels. See Fig. 3 for 
more details on the other descriptive variables. Habitat codes are defined in Table 1.  
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