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ABSTRACT. Multiple stable states or alternative equilibria in ecological systems have been recognized since the 
1960s in the ecological literature. Very often, the shift between alternative states occurs suddenly and the resource 
flows from these systems are modified. Resilience is the capacity of a system to undergo disturbance and maintain 
its functions and controls. It has multiple levels of meaning, from the metaphorical to the specific. However, most 
studies that explore resilience-related ideas have used resilience as a metaphor or theoretical construct. In a few 
cases, it has been defined operationally in the context of a model of a particular system. In this paper, resilience is 
defined consistently with the theoretical uses of the term, in the context of ecosystem models within an 
application to a simple model of lake eutrophication. The theoretical definitions of resilience and the 
characteristics of the operational definition that are necessary for ensuring consistency are reviewed. A 
mathematical formulation of resilience is built in the framework of the viability theory. This formulation 
emphasizes the link between resilience and the cost of the recovery after a disturbance. This cost is first chosen in 
relation to the time of crisis in the application to a model of lake eutrophication. The resilience values are then 
obtained by numerical integration. For another choice of the cost function, the viability algorithm is needed to 
compute the resilience values. These applications demonstrate the usefulness of our operational definition. 

INTRODUCTION 

Over recent decades, humans have imposed greater 
and greater demands upon natural systems. Some 
natural resources, such as fossil fuel, are in fact 
essential to modern society; other natural resources, 
such as air and water, are essential to human life. 
Consequently, the sustainability of the resource flows 
from these natural systems is a crucial issue that many 
researchers have already raised (Odum 1993, Arrow et 
al. 1995).  

The term �resilience� is often used when the 
sustainability of a system is studied. It has multiple 
levels of meaning, from the metaphorical to the 
specific (Carpenter et al. 2001). In the context of 
ecosystem modeling, the purpose of this paper is to 
provide an operational dynamic definition of 
resilience, consistent with the metaphorical and 
theoretical uses of the term. Using the framework of 
the viability theory, we first propose a mathematical 
formulation of resilience that is consistent with the 

characteristics taken from the theoretical definitions. 
Then, we apply this definition of resilience to a simple 
model of lake eutrophication to demonstrate the 
usefulness of our operational definition with regard to 
the viability algorithm. As part of the rationale for the 
methods described here, the different conceptual and 
operational definitions of resilience are briefly 
compared and reviewed because our operational 
definition must be consistent with the conceptual one.  

A number of conceptual definitions of resilience have 
been proposed. For Pimm (1984), resilience is the 
ability of a system to resist disturbance and the rate at 
which it returns to equilibrium following a 
disturbance. Loss of resilience is due to slow dynamics 
near a stable equilibrium. This definition only applies 
to the behavior of a linear system or a nonlinear one in 
the immediate vicinity of a stable equilibrium where a 
linear approximation is valid (Pimm 1991). As for 
Gunderson and Holling (2002), resilience is the 
capacity of a system to undergo disturbance and 
maintain its functions and controls. Loss of resilience 
is associated with slow dynamics in a region that 
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separates domains of attraction. This definition refers 
to the behavior of a nonlinear system near the 
boundary of a domain of attraction (Holling 1973). 
Environmental disturbances are often vigorous shake-
ups, rather than gentle stirrings. Furthermore, there 
may be no stable equilibrium to return to, but a 
periodic or chaotic attractor. Consequently, the second 
conceptual definition is more suitable for ecological 
systems.  

As far as operational definitions in the context of 
ecosystem models are concerned, a number of indices 
have been suggested to measure resilience. When the 
model is explicit, based on differential equations, the 
most frequently used estimate of resilience is based on 
the eigenvalues of the linearization of a nonlinear 
system near an equilibrium point: Pimm and Lawton 
(1977) measured resilience in terms of the dominant 
value of the linearization. This is an asymptotic 
property giving the rate of decay of disturbances as 
time progresses to infinity. To complement resilience 
as a measure of the response to disturbances, Neubert 
and Caswell (1997) proposed indices measuring the 
extent and duration of the transient growth in models 
with asymptotically stable equilibria. In the case of 
individual-based models and cellular automata, 
resilience is studied with simulations as the time 
needed after some kind of disturbance to return to its 
original state (Ortiz and Wolff 2002) or to reach a 
certain percentage of the previous abundance 
(Matsinos and Troumbis 2002).  

However, the concept of resilience introduced by 
Holling (1973) stands in contrast to the concept of 
stability in the strict static sense: defining resilience as 
how fast the variables return to equilibrium is 
emphasizing equilibrium conditions, low variability, 
resistance to and absorption of change, whereas 
resilience emphasizes the boundary of a stability 
domain and events far from equilibrium, high 
variability, and adaptation to change. Resilience is 
therefore a thoroughly dynamic notion. In this respect, 
van Coller (1997) showed how techniques from 
dynamic system theory help us understand the 
behavior of ecosystem models. The bifurcation 
diagrams provide a concise way of summarizing the 
results and can be used to characterize the resilience of 
models to both parameters and disturbances. 
Resilience is evaluated as a distance to bifurcation 
points in Ludwig et al. (1997) and as inversely 
proportional to the size of attraction domains in van 
Coller (1997). These measures evaluate the resilience 

of properties that correspond to attraction domain. 
They are relevant when the dynamics of the ecosystem 
model are deterministic. Therefore, the feedback law 
has to be defined first, and the results only concern this 
particular feedback law. Furthermore, Bonneuil (2003) 
shows that the feedback law choice in the well-known 
predator�prey model may be considered arbitrary 
because many other laws would have produced a 
similar behavior. This criticism is all the more 
pertinent when socio-economic systems are modeled.  

We propose an operational definition of resilience that 
takes into account our ignorance of the laws relating 
certain controls to the states of the system, and that 
comes close to Holling�s interpretation. We address 
the problem from the framework of the viability 
theory. The concept of resilience depends on: (i) the 
state of the system, (ii) the objectives (the property to 
be maintained�in the case of a lake, the resilience of 
the oligotrophic property or the eutrophic one may be 
studied; in the case of a farmer population, the 
resilience of the profitability of their activities may be 
studied and, in the case of a lake surrounded by a 
farmer population, the resilience of both oligotrophic 
property and profitability may be studied), (iii) the 
anticipated types of disturbances (the stronger the 
disturbance is, the less resilient any state of the system 
will be whatever the property under consideration), 
(iv) the cost associated with the effort that is necessary 
to restore this property (this cost may be either 
economic�the amount of money needed to restore the 
property; or ecological�the length of the period 
during which the population has to put up with the 
sight of turbid water in the lake; or both), (v) the 
control measures that are available, and (vi) the time 
scale of interest (Carpenter et al. 2001). The challenge 
is to provide an operational definition that explicitly 
takes into account these six points. The viability 
approach (Aubin 1991) deals with dynamic systems 
under state constraints. This method analyzes the 
compatibility between the (possibly nondeterministic) 
dynamics and state constraints. It also determines the 
set of controls that would prevent the system from 
violating the state constraints. In this paper, we apply 
this approach to the definition of resilience. We first 
describe the evolution of the state of the system (i) 
influenced by possibly several admissible controls (v) 
and then governed by possibly nondeterministic 
dynamics. We next consider the objectives (ii) as state 
constraints. Then, using the mathematical concept of a 
viability kernel (Aubin 1991), we highlight the need 
for anticipation of maintaining a property during the 
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time scale of interest (vi). This analysis also allows us 
to identify situations where the property may not be 
maintained. In such cases, we need to refine this 
analysis to evaluate the cost associated with the effort 
necessary to maintain or restore this property after a 
disturbance (iii). So, we extend another mathematical 
concept, the time of crisis (Doyen and Saint-Pierre 
1997) used by Béné et al. (2001) to analyze 
overexploitation of marine renewable resources. 
Finally, resilience is evaluated as the inverse of this 
cost.  

METHODS 

Mathematical Formulation of the Operational 
Definition of Resilience 

With the above in mind, the mathematical formulation 
of resilience is built in the framework of the viability 
theory (Aubin 1991).  

The model 

The dynamics (i) and the controls (v) 

The state of the ecological system is described at time 
t by a vector x(t) in the state space X. This vector may 
contain several variables: for example, the amount of 
phosphorus in the lake and the annual phosphorus 
input. The dynamics depend on the state of the system 
x(t) and on the different external actions called 
controls u(t) that can influence the evolution of the 
system at time t: for instance, banning excessive 
phosphorus inputs to a lake. A map f associates the 
variation of x(t) at time t with x(t) and u(t):  

   
 

  [1] 

where u(t) in U(x(t)) is one of the admissible controls 
when the state of the system is x. The admissible 
controls are the controls through which an institution 
(a governmental agency or a private manager) acts on 
the system. It can choose any of them and it can 
change from one to another; it also has enough 
resources to bear the costs associated with these 
changes.  

These dynamics may be nondeterministic if several 
controls are admissible. If we allow u to be 

dynamically driven by some feedback law, the 
dynamics are described by an ordinary differential 
equation and the evolution of x(t) is deterministic. 
However, as feedback laws are often arbitrarily chosen 
(Bonneuil 2003), we do not make further assumptions 
than u(t) in the set U(x(t)). The solution x(.) depends 
on the chosen admissible control u(.) which is not 
known beforehand.  

The objectives regarded as state constraints (ii) 

The objective is to maintain a system property, for 
example, to maintain a lake in an oligotrophic state. 
We consider the map h, which associates with the state 
of the system, an indicator of this desired property. It 
holds that, if this indicator belongs to a particular 
subset, e.g., M, the lake is oligotrophic if the amount 
of phosphorus in the water is below a given threshold. 
The set of all states such that this property holds is :  

      [2] 

This set K defines the set of state constraints to be 
considered in the viability approach.  

The objective of maintaining a system property of 
interest is a rather static assumption that may seem 
poorly adapted to the changing world we live in: a 
population that wants an oligotrophic lake at t = 0 
may, a few years later, prefer to have an eutrophic lake 
to use as nutrient sink. However, our aim is not to 
simulate the evolution of a system over a period of T. 
The question we attempt to answer is whether a 
property that is considered a property of interest at 
t = 0, can be maintained until time T and, if the answer 
is yes, how can it be maintained and how much will it 
cost to do so. No doubt the property that will be of 
interest at a later date will not be exactly the same.  

The time scale of interest (vi) 

The time scale of interest is defined by T, which may 
be infinite.  

A viability analysis 

The viability kernel 

The evolution of the system is governed by the 
dynamics described in Eq. 1. If its state x(0) at t = 0 
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belongs to K, that means that the property holds at 
t = 0. The first question that then arises is whether this 
property can be maintained until T. As several controls 
may be admissible at each state of the system, there 
may be many trajectories starting at state x(0) in K 
satisfying Eq. 1 for t in [0, T]. If one of them remains 
in K until time T, it means that there exists a control 
function such that the property holds during the time 
scale of interest and x(0) is called a viable point. If 
none of them remains in K until time T, it means that 
starting at x(0) the system is doomed to lose the 
property represented by K whatever the controls 
chosen among the admissible ones and x(0) is a non 
viable point. The first part of the analysis consists in 
determining the set gathering all states from which 
there exists at least one trajectory remaining in K until 
time T. Aubin (1991) showed the existence of the 
largest closed viable set in K under the dynamics 
described by Eq. 1, and called it the �viability kernel� 
of the set K, denoted Viab(K). This set depends on the 
dynamics, the set of state constraints, and the set of 
admissible controls. It is a subset of K that contains, of 
course, the equilibria but also the states from which 
there exists one trajectory remaining in K. These 
trajectories may be governed by permanent external 
control (viability niche). Regulation through changes 
in control can also take place. More details are given 
in Appendix 1.  

The cost function (iv), the disturbance (iii), and 
the resilience 

The cost may be socio-economic, ecological, or both. 
The cost function associates trajectory x(.) with its 
cost. Usually this cost is calculated by adding the gains 
and subtracting the expenses at each time step. In our 
approach, its definition is quite different. The cost is 
used to evaluate the resilience of one property of the 
system, so we have to relate its definition to the 
property under consideration: the cost must measure 
the capacity of the system to maintain, or at least 
restore, this property before time T. In other words, the 
cost of a trajectory must measure a distance between 
the trajectory followed by the system and the objective 
imposed on it: maintaining the property or at least 
restoring it before time T. Such a cost function is used 
in Béné et al. (2001) in their model dealing with the 
management of a marine renewable resource, the 
variable x represents the benefit. The constraint (or the 
objective) imposed on this variable is to be positive 
and the cost associated with the trajectory x(.) is the 
period of negative benefit. As a distance between a 

trajectory and the objective, the cost function has to 
satisfy the following two conditions.  

First, when the objective is reached , the cost must be 
null. Therefore, the cost of a trajectory along which the 
property of interest is maintained is null. Maintaining 
this property may impose some changes in controls 
and these changes cost. However, we do not take them 
into account because these costs are borne by the 
institution that acts on the system and are thus 
external; in the same way, Béné et al. (2001) do not 
take into consideration the cost of the time variation of 
the fishing effort in the evaluation of the global benefit 
in the sector.  

Second, the cost of a trajectory such that x(T) does not 
belong to K is infinite. Certainly, the states where the 
property does not hold are not useless. An eutrophic 
lake can for example still serve as nutrient sink. 
However, as far as the evaluation of the resilience of a 
property is concerned, the objective is to maintain this 
property or at least restore it before time T. x(T) does 
not belong to K means that the property has not only 
been lost but also it has not been restored before the 
end of the time scale T. Therefore, the cost of such a 
trajectory must be infinite as the objective is totally 
missed.  

There may be many trajectories starting at x and 
satisfying Eq. 1 because many controls may be 
available. The trajectory with minimal cost starting at 
x is then the best trajectory to follow according to the 
objective to maintain or restore the property of interest 
before time T.  

Resilience is the capacity of a system to undergo 
disturbance, so its value also depends on the 
anticipated disturbance, which is described by a set-
value map D that associates state x with set D(x) of all 
reachable states from x after this disturbance. When a 
disturbance occurs, the system jumps from a state x to 
a state y in D(x). The consequence of this jump in 
terms of the objective to maintain or restore a property 
of interest, the possible damage, is measured by the 
possible cost of restoration from the state of the sytem 
after the jump that is the minimal cost over all 
trajectories starting at y. The resilience of the system at 
state x toward a jump to state y is defined as the 
inverse of this cost. In particular, if the cost starting at 
y is infinite, the resilience of the system at state x 
toward a jump to state y is null. This definition of the 
resilience toward a jump from x to y is summarized by 
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the following equation :  

 
   [3]

where cK,T(x) is the minimal cost among all trajectories 
starting at x and satisfying Eq. 1 and with the 
convention that the inverse of 0 is infinity.  

The anticipated disturbance is defined as a set of 
attainable states D(x). The precautionary principle 
leads us to take into account the worst case in the 
definition of the resilience. So, the resilience of state x 
facing disturbance D equals the minimal value of the 
resilience over all jumps from x to y in D(x):  

 
   [4]

   

Application to a Simple Model of Lake 
Eutrophication 

Lake ecology and economic interpretation 

Two states of lakes are usually defined in the 
literature, a clear-water or oligotrophic state with 
relatively high economic value of ecosystem services 
(freshwater, used for irrigation, municipal water 
supplies, pollution dilution, and recreation) and a 
turbid-water or eutrophic state. Many lakes have 
experienced sudden shifts from oligotrophic to 
eutrophic states. Phosphorus (P) is the most critical 
nutrient for the eutrophication of lakes (Carpenter et 
al. 1999 a,b). Excess P is imported to farms in the 
form of fertilizer and animal feed supplements. P is 
added to the soil as inorganic fertilizer or manure. 
Most of the P accumulates in soil, which may then be 
transported to streams and lakes during runoff events 
associated with snowmelt or rainstorms. The system 
under study is composed of the lake and the population 
that benefits from its services or which provokes 
excess P inputs as a result of their farming activities. 
In this simplified model, as far as farmers are 
concerned, the main issue is ensuring the profitability 
of their activities. As far as lake managers are 
concerned, the objective is to maintain the lake in an 
oligotrophic state. As far as the manager of the whole 
system is concerned, the crucial issue is, knowing the 

concentration of phosphorus in the lake and the 
amount of inputs, can the lake remain oligotrophic and 
the farming activities remain profitable? After a 
disturbance, such as an increase of the concentration of 
phosphorus, is the lake doomed to become eutrophic? 
Can it become oligotrophic again? If the answer is yes, 
what are the best actions to undertake and what will be 
their cost in terms of time spent to recover or in terms 
of length of the period of negative benefit for farmers?  

The operational definition of resilience proposed 
above provides answers for all these questions.  

The model 

The dynamics (i) and the controls (v) 

To describe the essential dynamics of lake 
eutrophication we use a simplified version of the 
model described in Carpenter et al. (1999 a,b), 
assuming that the sediments are the major source of 
recycled phosphorus (ignoring the recycling by 
consumers):  

  
 

  [5]

where P is the amount of phosphorus (mass or 
concentration) in the water, L is the annual phosphorus 
input from human activities (mass or concentration per 
unit time) and b is the proportion of P lost at each time 
step. The maximum recycling rate of phosphorus 
(mass or concentration per unit time) is r. The overall 
recycling rate is assumed to be a sigmoid function of 
P. The value of P at which recycling reaches half of 
the maximum rate is m.  

Carpenter et al. (1999 a) have derived a bifurcation 
diagram to associate different types of lakes with sets 
of parameter values. Fig. 1 shows the bifurcation 
diagram for the simple lake model in the two-
dimensional parameter space (L,P) using parameter 
values from Janssen and Carpenter (1999): q = 8, 
r = 1, m = 1 and b takes three different values 
corresponding to the three types of lakes (b = 0.4 
irreversible lake, b = 0.8 hysteretic lake, and b = 2 
reversible lake). For b = 2, the low stable equilibrium 
remains unique as L increases. However, for b = 0.4 
and b = 0.8, the stability of the low equilibrium 
becomes precarious as L approaches L2 because the 
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domain of attraction shrinks; finally, at L = L2, the 
lower two equilibria disappear and the concentration 
of phosphorus jumps to the high value. Once the 
concentration has reached the high equilibrium, it is 
not easy to reduce it to the lower equilibrium: if L is 
reduced below L2, the concentration remains at the 

high equilibrium. For b = 0.8, as L declines below L1, 
there is a jump down to the low equilibrium that is not 
reversed as L increases again. This effect is called the 
�hysteretic effect.� For b = 0.4, jumping down to the 
lower equilibrium is impossible because L is positive. 
The jump to the higher equilibrium is irreversible. 

 

Fig. 1. A bifurcation diagram for the simple lake model using values q = 8, r = 1, m = 1, and b = 0.4 (left), b = 0.8 (middle), 
b = 2 (right) (where q is the exponent, r is the maximum recycling rate, m is the P-value at which recycling reaches half of 
the maximum value, and b is the proportion of P lost at each time step). The solid lines show the locus of the stable steady 
states and the dotted lines the unstable steady states in the two-dimensional space (L, P).  

The objectives regarded as state constraints (ii) As far as the dynamics of the phosphorus inputs are 
concerned, we assume that the manager can act on 
their time variation, d L/dt, for example, by enacting 
constraining laws. For simplicity, we suppose that the 
derivative of L directly depends on the control u 
chosen by the manager:  

Oligotrophic lakes are characterized by low nutrient 
inputs, low to moderate levels of plant production, 
relatively clear water, and a relatively high economic 
value of ecosystem services. Eutrophic lakes have high 
nutrient inputs, high plant production, murky water, 
with problems including anoxia and toxicity, and 
relatively low value of ecosystem services. So, the 
lake manager aims to keep it in an oligotrophic state. 
We assume that an oligotrophic lake becomes 
eutrophic when the amount of phosphorus in the water 
increases over some fixed threshold Pmax whatever its 
type. Consequently, the lake manager�s objective is 
reached when the positive variable P satisfies:  

   
 

  [6] 

As modifications of behaviors and changes in 
agricultural technology and in human and physical 
infrastructure take time, we consider that the time 
variation of the phosphorus inputs from human 
activities is bounded, so u must belong to the closed 
set of admissible controls:  

      [8] 

      [7] 
   

Certainly, the oligotrophic property of a lake does not 
only depend on the phosphorus in water, but also on the 
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phosphorus in the mud or in the soil. Ludwig et al. (2003) 
compared the optimal policies calculated with the one-
dimensional model and with the two-dimensional one in 
which the mud dynamics are taken into account. They 
underlined the importance of the slow dynamics when 
the time horizon for optimization is long enough for 
substantial changes to occur. For simplicity, we neglect 
the mud and soil dynamics. Nevertheless, the same 
approach can be applied with two additional variables 
and a set of state constraints where the oligotrophic 
property holds, described by conditions imposed not only 
on the phosphorus in the water but also on the 
phosphorus in the mud and in the soil.  

The farmers� aim is to ensure the profitability of their 
activities. We suppose in this simple model that their 
benefit depends linearly on the inputs of phosphorus. 
Consequently, their objective is reached when the 
value of phosphorus inputs from human activities is 
higher than a given threshold Lmin. We also assume 
that there is a maximal threshold for phosphorus inputs 
Lmax fixed by institutions or stakeholders. So, the 
farmers� activities are profitable and legal when:  

      [9] 

Equations 5, 6, 7, 8, and 9 can be written synthetically 
under the formalism of Eq. 1 with x(t): = (L(t),P(t)):  

   
   [10]

under the constraints  

      [11]

Like Pmax in the previous paragraph, Lmin may depend on 
socio-economic variables in a more complex model. 
Taking it into account would lead to a more complicated 
shape for the set of states constraints K, but the same 
approach can be applied because in the viability theory, 
the only constraint on K is that K has to be closed.  

The time scale of interest (vi) 

We choose a value of the time scale of interest, T, 
large enough to see the effects of drastically 
diminishing the phosphorus inputs. Thus, as the 

maximal value of allowed phosphorus inputs is Lmax 
and the maximal decreasing rate is VLmax , the value of 
T has to satisfy:  

   
 

  [12] 

   

The cost functions (iv) 

We recall that these cost functions are used to evaluate 
the resilience of the property defined by the set K 
which, in this application, ensures the profitability of 
the farmers� activities and keeps the lake in an 
oligotrophic state. Consequently, these functions have 
to satisfy two conditions: first, the cost of a trajectory 
along which the property is maintained is null; second, 
the cost of a trajectory such that x(T) does not belong 
to K is infinite. Furthermore, the trajectory starting at x 
with minimal cost is the best trajectory to follow 
according to the objective to maintain or at least 
restore the property of interest before time T.  

In practice, the ways of evaluating the cost of a 
trajectory x(.) = (L(.),P(.)) satisfying Eq. 10 are 
numerous and depend on the situation.  

If the farmers refuse the slightest negative benefit and 
if only the time needed by the lake to recover matters, 
the cost of a trajectory x(.) is infinite if it crosses the 
line L = Lmin and otherwise is measured by the time 
spent in an eutrophic state. The time spent by this 
trajectory outside K is a functional that was introduced 
by Doyen and Saint-Pierre (1997) and called the �time 
of crisis.� The function χ that associates x with the 
minimal cost over all trajectories starting at x is then 
defined by:  

 
 [13]

In the second cost function, the farmers� objectives do 
not totally prevail over the ecological ones. The cost 
function is made up of two terms: the first term, which 
corresponds to the ecological cost, is the same as in the 
cost function χ; the second one, which is an economic 
cost, measures the time duration of the period of negative 
profits weighted by the norm of these negative profits. 
The first term is multiplied by a factor c1 and the second 
by c2. These factors show the level of priority put on each 
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cost. Contrary to the first cost function, the cost of a 
trajectory such that the property is restored at time T is 
always finite because no state is forbidden. The function 
that associates x with the minimal cost over all 
trajectories starting at x is then λ defined by:  

     [14]

Actually, the first cost function equals the second one 
with c2 equal to infinity.  

The disturbance (iii) 

In this simple example, we consider disturbances Dα 
corresponding to a sudden increase of the concentration 
of phosphorus in the lake. α represents the maximal 
intensity of the anticipated disturbance. Such a 
disturbance modifies the concentration of phosphorus P 
but leaves the amount of inputs L unchanged. If a 
disturbance Dα occurs when the state of the system is x, it 
will jump to a state y belonging to set Dα (x):  

      [15] 

RESULTS 

In the simplest case (when the cost functional is the time 
of crisis χ), the viability kernel, the cost function, and the 
resilience level curves can be solved analytically, and the 
plots are obtained by numerical integration of differential 
equations. As far as the second cost functional λ is 
concerned, we use the viability algorithm (Saint-Pierre 
1994) to compute the resilience values.  

Viability Kernels 

The first question that arises is whether the evolution (Eq. 
10) is compatible with the objective represented by the 
set K (Eq. 11): ensuring the profitability of the farmers� 
activities and keeping the lake in an oligotrophic state. In 
other words, our aim is to determine the levels of 
phosphorus inputs and phosphorus in the water, (L,P), 
belonging to the set K such that there exists a trajectory 
starting from them and remaining in K until time T. 
These trajectories are called viable trajectories because 
the objective is completely met when such trajectories 
are followed. We first identify viable stationary points, 

then viability niches, and finally we compute the whole 
viability kernel that gathers all states from which there 
exists at least one trajectory satisfying Eq. 10 remaining 
in K until time T. The viability kernel is then smaller than 
the set of state constraints K.  

Viable stationary points 

The stationary points correspond to d L/dt = 0 and d 
P/dt = 0. These are viable when they belong to K. 
Thus, the viability kernel of the set of state constraints 
K contains the equilibria xeq = (Leq,Peq) such that  

     [16]

The set of viable equilibria corresponds to the line EQ 
in Fig. 2. The solid part of the line contains the stable 
equilibria, the dashed part the unstable ones.  

Viability niches 

The viability niches correspond to initial phosphorus 
inputs and phosphorus in water such that the resulting 
evolution with a permanent external control u(t) = u0 
remains in K. Clearly viable equilibria are part of 
viability niches. As d L/dt = u0 and L must be bounded 
for a trajectory to be viable, the only non empty viability 
niche is the viability niche of u0 = 0, N(0). u(t) = 0 
implies L(t) = L(0) = L0 is constant and the variation of 
P(t) from P(0) to one of the possible three steady states 
Peq(L0) is monotonous. Thus, if Peq(L0) belongs to K, the 
intersection between the attraction domain of Peq(L0) and 
K belongs to N(0). N(0) is the union for L0 = Lmin to Lmax 
of such intersections. This viability niche is colored light 
gray in Fig. 2.  

The viability kernel 

The viability kernel differs from the niches in that, for the 
kernel, regulation through changes in control can occur, 
thus allowing the viability to be increased. Such changes 
are limited to the set of admissible controls: the intensity 
of the time variation of the phosphorus inputs must be 
smaller than VLmax, modeling the resistance to change 
and the rigidity of the decision. When VLmax tends toward 
0, the viability kernel tends toward the viability niche 
N(0) in accordance with Carpenter et al. (1999a). An 
increase of VLmax allows a greater decrease in phosphorus 
inputs from human activities, so the surface of the 
viability kernel increases with VLmax (Fig. 3).  

 
 

http://www.ecologyandsociety.org/vol9/iss2/art8


Ecology and Society 9(2): 8. 
http://www.ecologyandsociety.org/vol9/iss2/art8 

 

 

Fig. 2. The viable stationary points (segment EQ) and, in gray, the viability niche N(0) of the control u0 = 0. The set of state 
constraints, K = [Lmin; Lmax] × [0; Pmax], is bordered by a black rectangle. Lmin = 0.1, Lmax = 1, Pmax = 1.2.  

 

 

Fig. 3. Viability kernels for an hysteretic lake (b = 0.8). The set of state constraints, K = [Lmin; Lmax] × [0; Pmax], is bordered 
by a black rectangle. Lmin = 0.1, Lmax = 1, Pmax = 1.2 and VLmax takes increasing values. Viab(K) is colored light gray. The 
viability niche N(0), which is contained in the viability kernel, is white.  
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We can distinguish three qualitative configurations for 
the viability kernel depending on the parameters 
(Lmin,Lmax,Pmax). These three cases are illustrated in 

Fig. 4 for an irreversible lake, in Fig. 5 for an 
hysteretic lake, and in Fig. 6 for a reversible lake.  

 

Fig. 4. Viability kernels of an irreversible lake (b = 0.4) for different values of (Lmin, Pmax). The set of constraints K = [Lmin; 
Lmax] × [0;Pmax] is bordered by a black rectangle and Viab(K) is colored light gray. (VLmax = 0.1). Varying the pair (Lmin, Pmax) 
alters the shape of the viability kernel: if Pmax is strictly smaller than the P-values of the equilibria associated with Lmin, then 
the kernel is empty; otherwise, the shape of the kernel depends on the comparison between Pmax and the P-values of the 
equilibria associated with Lmin. The curve g defines the right boundary of the viability kernel, and corresponds to a trajectory 
satisfying u = -VLmax.  

 

Case 1 is global viability. This is the most favorable 
case because the viability kernel equals the whole set 
of state constraints, Viab(K) = K. This situation occurs 
when Pmax is larger than all the P-values of the 
equilibria associated with Lmax. This statement means 
that, whenever the maximal phosphorus input is low 
enough or, in a symmetric way, whenever the 
threshold of eutrophication is high enough compared 
with the P-values of the equilibria associated with 
Lmax, viability holds everywhere. This global viability 
is represented in Fig. 6 in the case of a reversible lake.  

Case 2 is partial viability. The viability kernel is a 
strict but non-empty subset of K. This case occurs 
when Pmax is strictly smaller than the highest P-values 
of the equilibria associated with Lmax and bigger than 
the smallest P-values of the equilibria associated with 
Lmin. The curve g defines the right boundary of the 
viability kernel and corresponds to a trajectory 
satisfying d L/dt = -VLmax (Fig. 4, Fig. 5, and Fig. 6). 
This curve represents the states of the system where it 
is essential to change the control and choose u = -
VLmax, the maximal decreasing rate of phosphorus 
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inputs. The set K/Viab(K) contains situations where 
the values of the phosphorus inputs and the 
phosphorus in water are too high to maintain the 
trajectory in K until time T regardless of the control 
choices.  

In case 3, the viability kernel is empty. This situation 
occurs when Pmax is strictly smaller than the smallest 
P-values of the equilibria associated with Lmin. In 

particular, no equilibrium belongs to K because an 
equilibrium located in K always belongs to Viab(K). 
This situation most likely occurs when the state of the 
lake is irreversible (Fig. 4 ).  

Numerical results of the next two subsections are 
computed with fixed values of the following 
parameters: Lmin = 0.1, Lmax = 1, Pmax = 0.5, VLmax = 0.1 
and T = 50.  

 

Fig. 5. Viability kernels of an hysteretic lake (b = 0.8) for different values of (Lmin, Pmax). The set of constraints K = [Lmin; 
Lmax] × [0; Pmax] is bordered by a black rectangle and Viab(K) is colored light gray. (VLmax = 0.1). Varying the pair (Lmin, 
Pmax) alters the shape of the viability kernel: if Pmax is strictly smaller than the P-values of the equilibria associated with Lmin, 
then the kernel is empty, otherwise, the shape of the kernel depends on the comparison between Pmax and the P-values of the 
equilibria associated with Lmin. The curve g defines the right boundary of the viability kernel, and corresponds to a trajectory 
satisfying u = -VLmax.  

 

Cost Functions 

We noted in the preceding section the possible 
existence of partial viability. From the states belonging 

to K/Viab(K), the dynamics cause the system to leave 
the domain of constraints regardless of the controls: 
the lake is doomed to become eutrophic, or the benefit 
is doomed to become negative. The property of 
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interest cannot be maintained. The question that then 
arises is whether a trajectory starting from x in 
K/Viab(K) exists, such that this property is restored 
before time T. If the answer is yes, the cost of 
following this trajectory is evaluated by cost functions 
that represent measures of the distance between it and 
an ideal trajectory along which the property would 
have been maintained (this ideal trajectory is thus 

contained in K). The minimal cost over all trajectories 
starting at state x of the system and satisfying Eq. 10 is 
the most optimistic prediction of the future cost when 
the present state of the system is x. This cost depends 
on the viewpoint of the manager. We choose to study 
the values of two different arbitrary cost functions 
defined by Eq. 13 and Eq. 14.  

 

Fig. 6. Viability kernels of a reversible lake (b = 2) for different values of (Lmin, Pmax). The set of constraints K = [Lmin; Lmax] 
× [0; Pmax] is bordered by a black rectangle and Viab(K) is colored light gray. (VLmax = 0.1). Varying the pair (Lmin, Pmax) 
alters the shape of the viability kernel: if Pmax is strictly smaller than the P-values of the equilibria associated with Lmin, then 
the kernel is empty, otherwise, the shape of the kernel depends on the comparison between Pmax and the P-values of the 
equilibria associated with Lmin.  

 

Trajectories from K/Viab(K) 

Figure 7 shows trajectories from different states that 
are in K but not in Viab(K) and governed by controls 
such that:  

  
 

  [17]

All trajectories leave K sooner or later because they start 
from states in K but outside Viab(K). However, some 
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trajectories reach Viab(K) before time T (Fig. 7, plain 
lines) and thus their cost can be finite. Other trajectories 
converge toward an equilibrium outside K (Fig. 7a dotted 

lines), their costs are infinite whatever the cost function χ 
or λ because the property of interest cannot be restored.  

 

Fig. 7. Trajectories starting from non viable states controlled by Eq. 17 for (a) an irreversible lake (b = 0.4), and (b) an 
hysteretic lake (b = 0.8). (Lmin = 0.1, Lmax = 1, Pmax = 0.5 and VLmax = 0.1.) Time is indicated by open circles drawn along the 
trajectory at regular time intervals. The arrows show the direction of the trajectories. The trajectories that reach Viab(K) 
before time T are drawn as solid lines, the rest as dashed lines. In the case of the hysteretic lake (b), all the trajectories reach 
Viab(K), whereas most of them are captured by a high-P steady state in the case of the irreversible lake (a).  

 

Level curves of the cost functions 

Common features 

The two cost functions divide the space X into three 
areas:  

(i) the set of states for which the cost is zero (gray area 
in Figs. 8�9). This set equals Viab(K) for all cost 
functions;  
(ii) the set of states for which the cost is finite. In this 
area, the level curves do not merge with each other; 
and  
(iii) the set of states for which the cost is infinite (for 
instance, the states for which the optimal trajectories 
are drawn as dotted lines in Fig. 7a). This set contains 
the states from which the property cannot be restored 
regardless of the cost function. It is shaded gray in Fig. 
8 and white in Fig. 9.  

The cost function χ 

In the case of χ, the time of crisis reaches its minimum 
for the trajectories controlled by Eq. 17 shown in Fig. 7 
(mathematical proof in Appendix 2): the optimal policy 
is to decrease the inputs down to Lmin with the maximal 
admissible velocity (-VLmax) and then to keep L = Lmin 
constant because the farmers cannot support the slightest 
negative benefit. It is worth noting that, depending on the 
starting state, this policy may succeed in restoring the 
oligotrophic property (see trajectories drawn as solid 
lines in Fig. 7) or may fail (see trajectories drawn as 
dotted lines in Fig. 7a). The time of crisis can be 
evaluated by numerical integration along such 
trajectories. The plots of the level curves of this time of 
crisis (i.e., the lines along which the time of crisis is 
constant) are drawn in Fig. 8. The optimal trajectories 
and the time of crisis level curves merge inside 
K/Viab(K) because the time of crisis measures the time 
spent outside K.  
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Fig. 8. Level curves of the time of crisis function for (a) an irreversible lake (b = 0.4), and (b) an hysteretic lake (b = 0.8). 
(Lmin = 0.1, Lmax = 1, Pmax = 0.5, and VLmax = 0.1). The times of crisis of two states that belong to the same solid line are finite 
and equal. Viab(K) (light gray area) and the set of states where the time of crisis is null merge. The time of crisis takes the 
infinite value for L smaller than Lmin in both cases. In the case of the irreversible lake (a), the set of states with infinite cost 
(shaded area) is larger because there are states from which the property of interest cannot be restored before time T.  

 

The cost function λ 

For the second cost function, λ, we cannot find the 
optimal trajectories analytically. We use the 
characterization of the cost function map in terms of the 
boundary of a viability kernel described by Doyen and 
Saint-Pierre (1997) and then compute the values of the 
cost function λ thanks to the viability algorithm (Saint-
Pierre 1994). We evaluate the values of this cost function 
for two sets of parameter values: c1 = 0.3, c2 = 17, and 
c1 = 1.5, c2 = 5. In the second case, the importance of the 
ecological issue is larger compared with the economic 
one than in the first case. The level curves of the cost 
function λ are plotted in Fig. 9 and Fig.10 displays the 3-
D graph of this cost function. Contrary to the cost 
function χ, the area L<Lmin is not forbidden. The optimal 
policy is to decrease the inputs down to L0<Lmin for the 
oligotrophic property to be restored faster and then to 
increase the inputs to Lmin for the farmers� benefit to be 
positive again. The value of L0, which depends on the 
starting state of the system, is the answer for the tradeoff 
between the economic and ecological issues. The more 
important the ecological issue is compared with the 
economic one, the smaller L0 is.  

Disturbance Cost and Resilience 

The cost functions associate a state of the system with the 
minimal cost necessary to restore the property of interest. 
When a disturbance occurs, the system jumps from state 
x to state y. The minimal cost associated with y provides 
a measure of the possible damage caused by the jump in 
terms of the capacity to maintain, or at least restore, this 
property. The disturbances we consider are a sudden 
increase of the concentration of phosphorus in the water. 
Following the precautionary principle, their cost is the 
maximal cost engendered by the system jump from state 
x to state y in Dα (Eq. 15). The inverse of this cost 
provides the measure of resilience we propose.  

Disturbance cost 

In this simple example, whatever the state of the system x 
and the cost function (χ or λ), the maximal cost is caused 
by the jump of maximal magnitude. Consequently,  

 
 [18]
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Fig. 9. Level curves of the cost function λ for an irreversible lake (b = 0.4) (left column) and for an hysteretic lake (b = 0.8) 
(right column). Lmin = 0.1, Lmax = 1, Pmax = 0.5 and VLmax = 0.1). The cost function λ parameters c1 and c2 equal 0.3 and 17, 
respectively, in the first row and 1.5 and 5, respectively, in the second row. The values of the cost function of two states that 
belong to the same colored line are equal. Viab(K) (gray area) and the set of states where the cost is null merge. In the case of 
the hysteretic lake (b), the value of the cost function is finite for all states, whereas the cost function takes the infinite value in 
the case of the irreversible lake (left column).  
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Fig. 10. Graph of the cost function λ for an irreversible lake (b = 0.4)(left column) and for an hysteretic lake (b = 0.8) (right 
column). (Lmin = 0.1, Lmax = 1, Pmax = 0.5 and VLmax = 0.1.) The cost function λ parameters c1 and c2 equal 0.3 and 17, 
respectively, in the first row and 1.5 and 5, respectively, in the second row. The cost is represented by the vertical coordinate. 
Two points with the same vertical coordinate have the same cost and are depicted with the same color. Viab(K) (dark blue 
area) and the set of states where the cost is null merge. In the case of the hysteretic lake (b), the value of the cost function is 
finite for all states, whereas the cost function takes the infinite value in the case of the irreversible lake (left column).  

 

Level curves of the resilience 

Main features 

Resilience is defined as the inverse of the disturbance 
cost and depends on the intensity of the disturbance, α 
and on the cost functional choice, χ or λ. From Eq. 18, 
the resilience values are obtained by:  

  

 

  [19]

We evaluate the resilience values for each cost 
function and for one value of the maximal magnitude 
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of the anticipated disturbance. The level curves of the 
resilience are plotted in Fig. 11 for an irreversible lake 

and in Fig. 12 for an hysteretic lake. 

 

Fig. 11. Level curves of the resilience for an irreversible lake (b = 0.4) (Lmin = 0.1, Lmax = 1, Pmax = 0.5, and VLmax = 0.1). The 
cost functions used to evaluate resilience are χ in the first row and λ in the second. The anticipated disturbance is a sudden 
increase in the concentration of phosphorus. Its maximal intensity is α = 0.15. The resilience of two states that belong to the 
same line are equal. The subset of Viab(K) where resilience is infinite is shaded light gray. The set where resilience is null is 
colored dark gray.  
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Fig. 12. Level curves of the resilience for an hysteretic lake (b = 0.8) ( Lmin = 0.1, Lmax = 1, Pmax = 0.5, and VLmax = 0.1). The 
cost functions used to evaluate resilience are χ in the first row and λ in the second. The anticipated disturbance is a sudden 
increase in the concentration of phosphorus. Its maximal intensity is α = 0.15. The resilience of two states that belong to the 
same solid line are equal. The subset of Viab(K) where resilience is infinite is shaded light gray.  
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Fig. 13. The resilience value at the state L = 0.2 and P = 0.25 as a function of the maximal disturbance intensity α for the two 
cost functions, χ (solid line) and λ, with c1 = 1.5 and c2 = 5 (dashed line). The lake is hysteretic (b = 0.8). (Lmin = 0.1, 
Lmax = 1, Pmax = 0.5, and VLmax = 0.1).  

 

The resilience functions divide the space into three 
areas:  

(i) the areas shaded light gray correspond to infinite 
resilience: the state of the system remains in Viab(K) 
even if a disturbance of the anticipated magnitude 
occurs, 
(ii) resilience is finite between the level curves: 
following a disturbance of anticipated magnitude, the 

lake may become eutrophic instantaneously or later. 
However, the oligotrophic state can be restored before 
time T, 
(iii) resilience is null for the states belonging to the 
dark gray areas: these areas contain the states from 
which a disturbance of the anticipated magnitude may 
make the system jump to a state where it is doomed to 
leave K and cannot return before time T. 
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Comments 

According to our operational definition, the resilience 
value depends on:  

(i) the state of the system: Fig. 11 and Fig. 12 show the 
level curves of the resilience that is the resilience value 
according to the state of the system,  
(ii) the objectives represented by the set K,  
(iii) the intensity of the anticipated disturbance: Fig. 13 
plots the resilience value of the state with coordinate 
L = 0.2 and P = 0.25 according to the magnitude of the 
disturbance α. For low values of α, resilience is 
infinite. Thus, as α increases, resilience decreases,  
(iv) the way of evaluating the costs: the comparison 
between the plots in Fig. 11 or in Fig. 12 highlights the 
influence of the choice of the cost function. Two states 
may belong to the same level curve of the resilience 
for one cost function choice and to different level 
curves for another choice. In the first case, these states 
have identical resilience values, in the second case, 
one state is more resilient than the other, (v) the 
admissible controls represented by the set {U(x)}x, and 
(vi) the time scale of interest, T, which do not vary in 
this subsection but strongly influence the shape of the 
viability kernel (see the subsection entitled �Viability 
kernels�).  

DISCUSSION 

A large part of ecological theory focuses on 
asymptotic behavior (Hastings et al. 1993, Ludwig et 
al. 1993) and the static viewpoint inspires many 
operational definitions of resilience: Neubert and 
Caswell (1997) provide two indices for measuring the 
extent and duration of transient growth caused by a 
perturbation from an asymptotically stable 
equilibrium. In the case of individual-based models 
and cellular automata, resilience is studied with 
simulations as the time needed after some kind of 
disturbance to reach a certain percentage of the 
previous abundance (Matsinos and Troumbis 2002 ; 
Ortiz and Wolff 2002).  

However, nonlinear dynamics do conventionally 
characterize ecosystem models and nonlinearity is 
notorious for producing long and/or large transients. 
Resilience emphasizes events far from equilibrium. In 
this respect, van Coller (1997) and Ludwig et al. 
(1997) put the emphasis on the boundary of a stability 
domain: they evaluate resilience in terms of distance to 
bifurcation points or size of attraction domains. Their 

approach applies consistently to dynamic models 
described by differential equations. In this paper, we 
aim at going further and taking into account our 
ignorance of the laws relating certain controls to the 
states of the system.  

We have proposed a new mathematical formulation of 
resilience in the framework of the viability theory. The 
main purpose of this new approach is to provide an 
operational definition of resilience that takes into 
account the variety of dynamics available to the 
system and that comes close to Holling�s 
interpretation. First, we have described the dynamics 
of the system, allowing several time variations 
depending on the chosen control at each time step. 
Second, we have studied the resilience of one property 
of interest: we have identified the states where this 
property holds as a set of state constraints in which the 
trajectory has to be contained for the property to be 
maintained during the time scale of interest. Third, in 
contrast to the static viewpoint, we have focused on 
the notion of trajectory. More precisely, we have 
focused on the set of trajectories starting from any 
state of the system and associated with different 
control functions. At each trajectory, we have 
associated a cost that is either null if the property is 
maintained along the trajectory or that represents the 
cost of restoration if the property is lost and then 
restored. This cost is infinite if the property cannot be 
restored. Fourth, we have defined the resilience value 
at one state of the system as the inverse of the minimal 
cost over all trajectories starting at the state to which 
the system has jumped following the disturbance.  

To apply our definition of resilience, we have revisited 
a highly simplified classical model of lake 
eutrophication. This case study demonstrates that our 
definition, together with the viability algorithm, is 
operational. Furthermore, it shows that our definition 
takes into account all the parameters used in 
conceptual definitions of resilience: the state of the 
system, the objectives (the property to be maintained), 
the anticipated types of disturbances, the cost 
associated with the effort necessary for restoring this 
property, the control measures that are available, and 
the time scale of interest (Carpenter et al. 2001). 
Notwithstanding that this simplified model falls short 
of accurately representing the complex eutrophication 
process, it is nonetheless an adequate proxy for 
straightforward testing of the validity of our new 
definition of resilience.  
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SPECULATION 

This work suggests a number of interesting open 
problems. For example, theoretical and experimental 
ecologists have studied how resilience is affected by 
ecosystem characteristics, including energy flow 
(DeAngelis 1980), nutrient loads and nutrient cycling 
(Steinman et al. 1991), food chain length (Cottingham 
and Carpenter 1994), and food web connectivity 
(Armstrong 1982). It would be interesting to see how 
these properties affect our definition of resilience.  

Our results concern the mathematical definition of 
resilience and its calculation from mathematical 
models. The comparison between the calculated 
trajectories and those obtained by historical empirical 
data would constitute another relevant way of 
validating the model. Thus, mathematical concepts and 
tools provided by viability theory can be helpful in 
constructing better models. Moreover, our results have 
implications for empirical studies: our approach 
provides the controls to be used to follow the 
trajectory with the minimal cost. Applying these 
controls on real ecosystems may improve their 
recovery.  

However, it is clear that the model adopted in this 
study is stylized and built on simplistic assumptions. 
Some of them have been made for the sake of 
simplicity and are easy to relax as the viability theory 
by itself imposes lesser constraints. We have assumed 
that the oligotrophic property of a lake only depends 
on the phosphorus in water, and we have also assumed 
that Lmin yields zero profits and any L larger than Lmin 
would yield positive profits. Consequently, the set of 
state constraints, K, is a rectangle. We can relax these 
assumptions by taking into account the slow dynamics 
of the phosphorus in the mud and in the soil, and the 
socio-economic variables upon which the farmers� 
profits may very well depend. This more complex 
model would lead to a less regular shape for the set of 
states constraints K, which would be described by 
conditions imposed not only on the inputs of 
phosphorus and the phosphorus in the water but also 
on the other variables. Nevertheless, the same 
approach can be applied to this more generic 
framework because, in the viability theory, the only 
constraint on K is that K must be closed.  

In the mathematical formulation of the definition of 
resilience, this set of state constraints K does not 
depend on t. Nevertheless, the property considered as a 

property of interest at t = 0 may depend on t, for 
example, having an increasing benefit. The trajectory 
must then remain in K(t) for the property to be 
maintained. In such simple cases as the increasing 
benefit, it is easy to modify the dynamics in such a 
way that K(t) becomes constant. However, in more 
complex cases, when the dependence of K(t) on t 
cannot be removed, the viability analysis is beyond the 
scope of this article.  

Our cost functions also suffer from 
oversimplifications. Only simple cost functions can be 
studied analytically. However, the characterization of 
the minimal cost values in terms of the boundary of a 
viability kernel allows us to compute the minimal cost 
of more complex functions. The assumptions imposed 
on functions in the viability theory are described in 
Appendix 1. Usual cost functions satisfy them.  

It is also worth noting that real ecosystems are seldom 
if ever subject to simple, temporally isolated 
disturbances. Our analysis thus deliberately ignores the 
effect of continual stochastic disturbances, but relies 
on the hope that the deterministic results will shed 
light on the stochastic case. Developing a definition of 
resilience in the framework of viability theory for 
stochastic systems would enhance the accuracy of 
using these mathematical concepts to evaluate 
resilience in ecosystem models. We may address this 
issue in the framework of a dynamic game (Aubin 
1997). The dynamics of the system at state x would not 
only be influenced by controls u in U(x), which can be 
chosen, but also by disturbances v in V(x) imposed by 
nature in an independent way for an unknown purpose. 
The anticipated features of the disturbances would be 
described by the conditions imposed on the set V(x) 
and starting at a state x, the trajectory would depend on 
the control function u(.) and on the disturbance 
function v(.). The relevant cost at state x would be 
similar to the one presented in this paper: the 
maximum overall anticipated disturbance functions 
v(.) of the minimum overall available control functions 
u(.) of the cost associated with the trajectory governed 
by u(.) and v(.).  

Finally, we have applied our definition to a classical 
simple model of lake eutrophication because our intent 
was to present our new method and we thought that 
this would be easier within a well known context. 
Thus, we have described P-dynamics by the sigmoid 
function and we have used parameter values taken 
from literature. However, there are great difficulties in 

 
 

http://www.ecologyandsociety.org/vol9/iss2/art8


Ecology and Society 9(2): 8. 
http://www.ecologyandsociety.org/vol9/iss2/art8 

 

obtaining accurate estimates for the parameters 
involved in the P and L dynamics (Ludwig et al. 2003) 
and, consequently, the trajectories on which we have 
based our definition may be biased. Instead of giving 
fixed values to each parameter, it would be more 
accurate to assume that their value at each time step 
lies within two fixed bounds. This way, the system 
response to an external action (a control) would not be 
deterministic. Such a model could be developed in the 
framework of the viability theory because this theory 
allows at each time step multiple velocities. There 
would be many trajectories associated with one control 
function, depending on the parameter values, and our 
ignorance of the parameter values could be treated as 
the disturbance functions of the previous paragraph. 
Actually, the viability approach does not impose a 
perfect knowledge of the system dynamics, the 
velocities may belong to sets and the only constraint 
imposed on the sets of velocities is that they must be 
convex.  

We have pointed out the advantages and the actual 
limits of the viability approach. We suggest that this 
approach is a fruitful framework to define resilience 
and more generally to address some of the issues 
encountered in ecosystem management. 

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/vol9/iss2/art8/responses/in
dex.html 
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APPENDIX 1. 

Viability theorems: characterization of the dynamics ( f,u) (Aubin 1991) 

The equation  

   
 
  [1] 

can also be written under the differential inclusion  

      [20] 

where  

      [21] 

is a point-to-set map, also called correspondence.  

In the model of lake eutrophication,  

     [22]
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The question of the determination of the viability kernel (the set gathering all states from which there exists at 
least one trajectory remaining in K under the dynamics F) can be correctly addressed when F is convex, upper 
semi-continuous with compact images and K compact.  

(i) The image F(x) is bounded and, as the dimension of the state space is finite, it is also compact. 
(ii) The convexity of F(x) results from its linearity in u. 
(iii) F is differentiable with respect to x in X at fixed u and the components ∂F/∂L and ∂F/∂P are bounded on K. 
This Lipschitz property of F on K implies that F is continuous (a fortiori upper semi-continuous).  

 

APPENDIX 2. 

Trajectories for which the time of crisis reaches its minimum 

Statement:  

Let x be a state in K but outside Viab(K). If x0(.) is the trajectory starting from x = (L, P) satisfying  

     [23]

and governed by controls u0(.) such that  

   
 
  [17]

and if x1(.) is another trajectory starting from x and satisfying Eq. 23, then  

      [24] 

Proof:  

The viability constraints on L(t) are L(t) in [Lmin; Lmax] and d L(t)/dt = u(t). So the viability constraints on L(t) 
impose the following constraints on u(t):  

   
 
  [25] 

Furthermore, u(t) is bounded, u(t) belongs to [-VLmax, VLmax]. 
The control law u0(.) satisfies these constraints and whatever the control law u1(.) satisfying these constraints, 
u0(y)≤ u1(y) for all states y in [Lmin; Lmax] × [0; +∞].  

Furthermore,  
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  [26] 

and  

   
 
  [27] 

for all states y in [Lmin; Lmax] × [0; + ∞]. 
Therefore, as L0(0) = L1(0) and P0(0) = P1(0), for all t in [0, T], L0(t) ≤ L1(t), P0(t) ≤ P1(t), and  

      [28] 

As  

   

 

  [13] 

then  

      [24] 
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